Q

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra

Swiss Confederation

Federal Department of Home Affairs FDHA Federal Office of Meteorology and Climatology MeteoSwiss

Nowcasting of thunderstorm Hamann U., Zeder J., Beusch L., Clementi L., Foresti L., Hering A., Nerini D., Nisi L., Sassi M., Germann U. © Madrid, European Nowcasting Conference 25.04:2019 Ulrich Hamann, Joel Zeder et al

COALITION-3 – Faces

Ulrich Hamann COALITION project lead

Joel Zeder Intern in 2018/2019 COALITION-3

Luca Nisi COALITION-1 forecaster

Alessandro Hering TRT developer

Elena Leonarduzzi Intern in 2016 COALITION-2

Urs Germann, head of MDR

Lorenzo Clementi head of MDRD

Loris Foresti precip. Attractor pySTEPS

Daniele Nerini pySTEPS

դ

Marco Sassi NWC-SAF, deployment

Lea Beusch Intern in 2017 Satellite Rainfall

© Madrid, European Nowcasting Conference 25.04.2019

Ulrich Hamann, Joel Zeder et al

Starting point before our study

- Thunderstorm cells are identified by radar with adaptive reflectivity thresholds.
- Thunderstorm intensity is expressed as heuristic TRT rank (in colours).
- Future position is extrapolated with the current motion.
- TRT rank is kept constant.
- Multi-sensor cell parameters are monitored.
- Automatic warning suggestions are generated for warning regions.
- Warning suggestions are modified by forecasters.

MeteoSwiss

Example for Thunderstorm Radar Tracking (Hering et al) 11 May 2010 for Switzerland. TRT rank expressed in colours.

TRT rank (heuristic thunderstorm intensity)

Cell severity ranking: Single **numerical score** [0, 0, 4, 0] based on cell attributes integrated with a weighting scheme (**fuzzy logic** like approach):

• Vertical integrated liquid VIL

MeteoSwiss

- Median of 45 *dBZ* Echo Top altitude *ET*45
- Maximum cell reflectivity MaxEcho
- Area of cell reflectivity ≥ 57 *dBZ* area57dBZ

Severity	RANK			
DEVELOPING	RANK = [1.2 - 1.5[
MODERATE	RANK = [1.5 - 2.5[
SEVERE	RANK = [2.5 - 3.5[
VERY SEVERE	RANK = [3.5 - 4.0]			

Ulrich Hamann, Joel Zeder et

 $RANK = \frac{2.0 * g(VIL) + 2.0 * g(ET45med) + 1.0 * g(dBZmax) + 2.0 * g(area57dBZ)}{7}$

© Madrid, European Nowcasting Conference 25.04.2019

Goals for this study (COALITION-3)

- Improved automatic TRT warning suggestions

 a) thunderstorm position
 b) thunderstorm intensity (expressed as TRT rank)
- Multi-sensor retrieval (satellite, radar, lightning, COSMO, meta-data)
- Update cycle 5 min
- Nowcast up to 45 min
- Long warning lead times

MeteoSwiss

• Quantitative, customer oriented output

Flowchart of COALITION-3

42

÷

순

42

÷

Retrieving cell histories

- Calculating motion vectors with pySTEPS. Feature selection with Shi and Tomasi (1994). Tracking with pyramidal implementation of Lucas-Kanade (1981) feature tracker algorithm
- Initial cell identification with TRT algorithm.
- Track position 45 min backwards in time to retrieve cell history (predictors).
- For each predictor following statistics are calculated in a 23 km diameter circle: 23km
 - Mean, Sum, Standard Deviation
 - Minimum and maximum value
 - 1%, 5%, 25% 50%, 75%, 95%, 99% Quantiles
 - Number of pixels with certain properties, e.g. precipitation > 0mm/h

MeteoSwiss

Monitor the thunderstorm intensity (TRT rank) up to 45 min into the future (truth for training)

© Madrid, European Nowcasting Conference 25.04.2019

An example of typical cell histories

4. SEVIRI, Radar, and Lightning Data within Lagrangian Framework

Input data - Cardinality

Overall, the final count of features is composed of:

- 68 input variables (RZC, IR 10.8 μm , PV at 500 hPa, Slope ...)
- \Rightarrow **10** time steps ($t_0, t_{-5min}, \dots, t_{-40min}, t_{-45min}$)
- 12 Statistics (Sum, Mean, Quantiles, Pixel counts ...) plus some conditional statistics of Radar variables
 - 68x10x12 = 8'160 possible input parameters
 - Training period summer 2018, about 10'000 observed cell histories

	Ł	└ \/ \/		\uparrow \uparrow \uparrow	\uparrow \uparrow \uparrow			\uparrow \uparrow
	RZC_s	tat -15 PERC75	RZC_stat -15 PERC95	RZC_stat -15 PERC99	RZC_stat -15 MAX	RZC_stat -10 SUM	TOPO_ALTITUDE_s	tat -20 PERC01
201804	291235 2018042910550020	-22.248047	0.000000	0.000000	0.00000	-3424.883789		-11.875000
201804	291235_2018042912000024	-1.099609	44.785156	94.321289	87.427734	1311.467773		-88.125000
201804	291235_2018042912000025	-0.245117	-1.833008	-31.992966	-32.000977	-314.942383		-5.800003
TRT Cells identified 201804	291235_2018042912050022	-0.861328	3.979492	14.365040	23.396484	103.207031		-16.274994
	291235_2018042912100033	-8.855469	-68.509766	-41.690041	0.00000	-1397.562500		-0.375000
by (unique) ID -	291235_2018042912200024	0.636719	0.706055	1.180468	0.00000	254.544922		0.000000
201804	291235_2018042912250029	0.804688	0.711914	-1.006836	1.375000	180.148438		-17.625000
and Date/Time	181000 201800181000008		10 200414	14 425240	12 000000	721 500067		
201809	181000_2018091819000008	-0.45554/	-10.399414	-14.435349	-13.000000	-/31.30000/		6.199997
201809.	181900_2018091819000033	0.289062	2.375000	6.605469	-2.2968/5	208.524414		57.875000
[34 ro	ws x 10128 columns]							
		T	c	÷ ф		.r.	ф "	
۳ _ک ۳ ۲ IVIETEOSV	VISS © Madrid,	European N	owcasting Confei	rence 25.04.2019	_ے Ulric	h Hāmann, Joel	l Zeder et al 🛛 🖓	9
φ φ ^τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ	ст. С. С. С. С. С.	ት ት	ф ⁵		τ 	ф 	ст. С	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Machine learning nowcasting

© Madrid, European Nowcasting Conference 25.04

XGBoost model (gradient boosted trees)

- roughly equivalent to random forest with an ensemble of weak-learners (trees) as model
- but where during training, trees are added until the objective function converges
- where the mean squared error MSE is the loss function, and the regularisation term is the sum of scores at the leaves.
- XGBoost also produce an estimate how important an input variable is.
- Number of input parameter could be reduced to 750.

Ulrich Hāmann, Joel Zeder

Statistical learning – Feature selection

Top 20 features according to XGB model for t_{+20min} lead time:

Statistical learning – Feature selection

Relative importance of feature source:

Model evaluation

- XGBoost nowcasts (XGB, circles) always have the smallest RMSD (skilful up to t_{+45min})
- Probability matching (diamonds) is used to correct for the standard deviation (skilful up until t_{+35min})
- Probability matched results have a smaller RMSD as persistence (triangles) for all lead times.

Forecast times with same RMSD									
Persistence	5	10	15	20	25				
XGBoost, PM	6	14	22	30	42				
XGBoost	6	18	40	>45	>45				

MeteoSwiss

- የት የት

MeteoSwiss

÷

- የት የት

MeteoSwiss

MeteoSwiss

MeteoSwiss

÷

- የ-የ-

MeteoSwiss

MeteoSwiss

MeteoSwiss

MeteoSwiss

MeteoSwiss

- የት የት

MeteoSwiss

MeteoSwiss

MeteoSwiss

MeteoSwiss

MeteoSwiss

Summary

MeteoSwiss

- A multi-sensor thunderstorm nowcasting was developed (COALITION-3)
- Thunderstorm cell are tracked with motion vectors
- Multi-sensor cell history is monitored
- Gradient boosted trees (XGBoost) is used to nowcast thunderstorm intensity
- Feature importance ranking enables reduction to 750 predictors
- Nowcasted TRT ranks for all forecast times better than persistence
- Nowcasted TRT ranks skilful up to 45 min into the future
- Probability matching is used to preserve standard deviation
- Easily expandable to more input variables
- Strait forward to train ML to nowcast other variables, e.g. lighting activity

© Madrid, European Nowcasting Conference 25.04.2019

Ulrich Hamann, Joel Zeder ef

Future Outlook

Future work COALITION-3

- Improved TRT rank uncertainty estimates
- Feedback from forecasters
- **Validation** of COALITION-3 in comparison to TRT and operational thunderstorm warnings (POD, FAR, SS for different warning levels)
- **Operationalisation** of COALITION-3 Implement into automatic warning suggestion system of NinJo

Ulrich Hamann, Joel Zeder et

\$

÷

• Explore applicability for aviation with European coverage

Future work COALITION-4

÷ ÷ ÷

MeteoSwiss

- Forecast of **specific thunderstorm hazards**: heavy precipitation, lightning, hail and wind gusts
- Improved thunderstorm motion (right movers, topographic steering)
- Exploiting GPU-powered deep learning technology,
 e.g. convolutional neural networks to improve further the nowcast quality and lead time

© Madrid, European Nowcasting Conference 25.04.2019

• **Prioritize warning** suggestions by risk & uncertainty

승 수

Future Outlook – Adaptation to MTG

1. MTG 4D Weather Cube

2. Advanced Machine Learning

3. Thunderstorm Nowcast

÷

42

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra

Swiss Confederation

MeteoSwiss Operation Center 1 CH-8058 Zurich-Airport T +41 58 460 91 11 www.meteoswiss.ch

MeteoSvizzera

MeteoSwiss

Via ai Monti 146 CH-6605 Locarno-Monti T +41 58 460 92 22 www.meteosvizzera.ch

> ት ት

MétéoSuisse

7bis, av. de la Paix CH-1211 Genève 2 T +41 58 460 98 88 www.meteosuisse.ch

Federal Department of Home Affairs FDHA Federal Office of Meteorology and Climatology MeteoSwiss

MétéoSuisse

Chemin de l'Aérologie CH-1530 Payerne T +41 58 460 94 44 www.meteosuisse.ch

÷

စ္တိ Madrid, European Nowcasting Conference 25.04.2019မ်ာ 🕺 မွ Ulrich Hamai

÷

ຼ Ulrich Hamann, Joel Zeder et a