Improvements of Motion Vector in Variational Echo Tracking Technique by Correction of Initial Guess

Korea Meteorological Administration

Kwang-Ho Kim^{1,*}, Jong-Hoon Jeong², Sung-Hwa Jung¹, Mi-kyung Suk¹ and Kun-II Jang¹

¹Weather Radar Center, Korea Meteorologcal Administration ²Atmospheric Sciences and Global Change, Pacific Northwest National Laboratory

*khkim777@korea.kr

- ***** Backgrounds : Variational Echo Tracking (VET) in MAPLE
 - □ Since the scaling-guessing method uses one initial guess as a constant, it is difficult to estimate the motion vector in the beam blockage or weak echo area.
 - **The** accuracy of the motion vector directly affects prediction accuracy of MAPLE.
 - > McGill Algorithm for Precipitation nowcasting by Lagrangian Extrapolation(MAPLE)
- Purposes : Improvements of motion vectors in VET
 - □ In order to improve the quality of motion vectors of VET, initial guess

4. CASE STUDY

- ***** 3h forecast reflectivity field from MAPLE (Summer season) **CASE1:** 24 May, 2016 09:20 LST, **CASE2:** 15 July, 2016 20:00 LST
- Underestimation of motion vectors according to beam blockage and ground echo
- Correction of initial guess of VET using KLAPS

correct by using analysis field of numerical model and Doppler radar wind field.

2. DATA

***** Radar Reflectivity field

CMAX(column max) of reflectivity (10 KMA radars) □ HSR(Hybrid Surface Radar) of reflectivity

Korea Local Analysis and Prediction System (KLAPS)

Analysis wind field of numerical model : 700 hPa

3. METHODOLOGY

Correction of initial guess

- □ The motion vectors are calculated over 25*25 sub-area using a constant as initial guess by scaling-guessing method.
- □ A motion vector at each grid is then derived by bilinear interpolation using the 25*25 motion vector to apply the semi-Lagrangian advection. □ We applied 700 hPa wind field of KLAPS instead of a constant as initial guess of VET.

5. VERIFICATION

Improved MAPLE Skill scores according to correction of motion vector

D Period : 1 May ~ 31 Oct., 2016 (6 month)

CSI score	+1h	+2h	+3h	+4h	+5h	+6h
MAPLE	0.60	0.44	0.36	0.29	0.22	0.18
MAPLE(Correction)	0.64	0.53	0.44	0.38	0.31	0.26
Improvement rate(%)	6.7	20.5	22.2	31	40.9	44.4

Before

Before

After

After

Skill scores

Using contingency table

Bias score (BIAS)			Probability Of Detection (POD)		
(F+H)/(M+H)			H/(M+H)		
False Alarm Ratio (FAR)			Critical Success Index (CSI)		
F/(F+H)			H/(H+M+F)		
Contingency table		Forecast			
		Yes		Νο	
	Yes	H (Hit)		M (Miss)	
Observation	Νο	F (False Alarm)		C (Correctional reject)	

U Using rain gauge

- Mean Error(ME), Mean Absolute Error(MAE)
- Relative Root Mean Square Error (RRMSE), Correlation Coefficient (CC)

6. SUMMARY

Correction of initial guess of VET using wind fields of KLAPS solved the problem of underestimation of motion vectors in the beam blockage and ground echo area.

As a result of applying the improved motion vector to semi-Lagrangian advection, prediction accuracy of MAPLE was improved by 22% for 3-h forecast and the distortion of the precipitation shape is also reduced.

REEDERENCES

Germann, U., & Zawadzki, I. (2002). Scale-dependence of the predictability of precipitation from continental radar images. Part I: Description of the methodology. *Monthly Weather Review*, 130(12), 2859-2873. Germann, U., & Zawadzki, I. (2004). Scale dependence of the predictability of precipitation from continental radar images. Part II: Probability forecasts. Journal of Applied Meteorology, 43(1), 74-89.

ACKNOWLEDGMENTS: This research is supported by "Development and application of cross governmental dual-pol radar harmonization (WRC-2013-A-1)" project of the Weather Radar Center, Korea Meteorological Administration