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Abstract: Eastern Texas straddles a precipitation zone that transitions from semi-arid grasslands
to the humid, rainy conditions of the northern Gulf Coast.  While several studies have 
quantified the changing magnitude and frequency of daily extreme events, the paucity of 
hourly datasets have limited insight into how the growing proportion of rainfall exceeding 
hourly soil infiltration capacity has and will exacerbate the state’s droughts.  This paper builds 
on previous analysis, deploying algorithms with a temporal dimension to calculate soil moisture
scarcity from evapotranspiration and precipitation data based on FAO-56 methodology and 
then introduces a daily estimate of the proportion of precipitation that flows off the ground 
surface rather than replenishing moisture deficits for soils with three different infiltrative 
capacities at 12 observation sites.  The comparison of subsequent time series regression 
analyses showed that absorptive soils in east Texas have experienced modest, though mostly 
statistically insignificant, acceleration in drought trends after the incorporation of hourly rainfall
intensity data: for the 24 soil samples (out of 36) with saturated hydraulic conductivity (K sat) 
rates greater than 4.5 mm per hour, 14 had accelerated drying trends, five showed no change, 
and the remaining five displayed more gradual changes relative to their baseline trend 
magnitudes.                

Keywords: Water stress, evapotranspiration, precipitation, soil moisture 

1



1. Introduction
The largest state by area in the contiguous United States and the second-largest by total

and urban population, Texas houses diverse climate zones and experiences frequent extreme 
precipitation events (Nielsen-Gammon et al. 2020a).  Nearly 130 million acres of the state are 
farmland, with crops cultivated on approximately 23 percent of this total while the remaining 
lands are utilized for pasture and range (USDA 2017).  As the state’s population is projected to 
grow by over 70 percent in the next 50 years (Texas Water Development Board 2017), water 
usage and availability will become increasingly important to Texas’ economic stability.  
Groundwater supplies continue to diminish from aquifer depletion, and the demand forecast, 
fueled by growth in municipal usage, shows an 87-percent increase over current consumption 
by 2070 (Texas Water Development Board 2017).  The aforementioned forecast does not 
account for projected changes in drought severity from climate change (McGregor 2015; 
Nielsen-Gammon 2020a).

This analysis estimates trends in soil water scarcity over the eastern half of Texas from 
1980 through 2020, where the majority of the population lives and most high-value crops are 
cultivated.   Earlier calculations showed that under statistically insignificant annual precipitation
trends, soil moisture scarcity, the cause of agricultural drought, increased in eastern Texas due 
to higher evapotranspiration rates (Smith and Chang 2020).  Furthermore, sporadic rainfall 
coinciding with increasingly entrenched dry patterns leaves the region’s agricultural fields and 
municipal water customers vulnerable to increasingly severe long-term, short-term, and flash 
droughts (Kloesel et al. 2018; Steiner et al. 2018).  The finding agrees with climate model 
projections documenting decreases in soil moisture levels across the U.S., even in areas with 
stable or increasing annual precipitation, including the Southern Plains and Southeast (Seager 
et al. 2018; Trenberth et al. 2014; Ficklin et al. 2015).  Nielsen-Gammon et al. (2020b) showed 
large projected increases in Texas’ future soil moisture deficits that are anticipated to be 
especially acute during the summertime, a finding that can be buttressed by examining recent 
trends.       

Warmer temperatures resulting from anthropogenic emissions have coincided with the 
increasing frequency and magnitude of extreme precipitation events across the U.S. and in the 
South (Melillo et al. 2014; Janseen et al. 2014; Skeeter et al. 2019).  The Clausius-Clapeyron 
relationship estimates that for each degree celsius of warming, the atmosphere’s moisture-
holding capacity increases by approximately seven percent (Mishra et al. 2012).  Moreover, 
average precipitable water values over the Gulf of Mexico have swelled by 7.3 percent from 
1980 to 2018 (Wang et al. 2018).  Recent precipitation trends have not been uniform by 
geographic region: the Northeast U.S. has experienced the most robust increases (Easterling et 
al. 2017; Janssen 2014).    Eastern Texas straddles the more temperate, drier climate of the 
Southern Plains with the humid, wet climate of the Gulf Coast Region.  Although this part of the
state lacks orographically influenced microclimates, it is a transition zone from semi-arid 
prairies to the ubiquitous pine forests of the Southeast.  Both the Southeast and Southern 
Plains have shown positive trends in the frequency and magnitude of heavy daily events, 
although to a lesser extent than the Northeast U.S. (Wuebbles et al. 2017).   The trends are 
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projected to increase in the future due to changes in thermodynamic processes (Fischer 2015; 
Prein et al. 2015).  

Precipitation in eastern Texas can largely be attributed to frontal air lifting during the 
cool season and convective air lifting during the warm season (Choi et al. 2008).  Tropical 
cyclones are responsible for a significant yet sporadic portion of rainfall during the summer and 
fall seasons, reflected in elevated normal monthly values even though Houston receives 
precipitation every other year on average from such events (Trepanier and Tucker 2018).  After 
940 mm of rain flooded the city from Hurricane Harvey, recently published studies show a rise 
in extreme precipitation attributable to tropical cyclones in Southeast Texas (Zhang et al. 2018).
Van Oldenborgh et al. (2017) estimated that global warming caused Hurricane Harvey’s rains to 
fall 15 percent more intensely during the five-day period in August 2017 when the system 
stalled over the Houston area.   Enhanced probabilities of these occurrences are caused by 
large-scale global circulation patterns (Bhatia et al. 2019) and local factors such as urban land-
use change that can further destabilize the atmosphere (Zhang et al. 2018).  Urbanization also 
impacts coastal precipitation not associated with cyclones by exacerbating the heat island 
effect and influencing the sea breeze (Burian and Shepherd 2005).  Along with the 
aforementioned local circumstance, global factors may explain why coastal locations in 
Southeast Texas have generally seen more robust increases in extreme episodes relative to 
inland areas (Fagnant et al. 2020) since tropical cyclones making landfall have shown a positive 
correlation with time for larger accumulations of total event rains falling more heavily (Dhakal 
and Tharu 2018).  In addition to amplifying the rate and duration at which precipitation falls, 
urban development leads to more severe flooding by increasing the amount of impervious 
surface cover (Sebastian et al. 2019).  

Hourly precipitation data is limited due to the low number of observation locations that 
reliably measure at that timescale (Trenberth et al. 2017).  Thus, a lower number of studies 
exist, and those that do draw from a limited pool of stations.  Station data show that hourly 
winter precipitation rates in the U.S. South have shown the most robust increases relative to 
other seasons, a finding that is confirmed by regional studies (Mishra et al. 2012).   Brown et al. 
(2019; 2020) have authored two analyses on precipitation in the Southeast, in which eastern 
Texas was included, showing broad increases in the hourly intensity rates, with divergent 
results at individual stations.  Using a p value of 0.05, the authors found that 22 of 50 stations in
11 southern states showed statistically significant trends in average intensity, including a 
majority of their Texas sites.  Although most stations in the sample did not show significant 
increases in the frequency of predetermined 90th-percentile hourly events, Texas stations had 
the highest rates of annual growth – between 0.20% and 0.26% (Brown 2020).  Interestingly, 
the authors did not find that the duration of dry spells was lengthening across the Southeast or 
in Texas.  While this observation may appear to counter projections of increasing drought 
severity, agricultural drought depends on the balance between rainfall and evapotranspiration 
amounts, and therefore evapotranspiration may cause droughts to deepen more quickly even 
in periods with fewer dry days, as evident during flash droughts.      

Seeking to answer how drying trends are not only impacted by precipitation amount and 
temporality, but also intensity, this analysis incorporates hourly rainfall data in soil water 
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balances.  The calculation accounts for instances when the amount of water hitting the ground 
exceeds soil infiltration capacity and therefore runs off the surface rather than permeating it 
and supplying vegetation with moisture.  Water scarcity trends in Texas with and without the 
hourly adjustments are presented.  The comparison of trend direction and magnitude shows 
the increasing impact that heavy precipitation events have on drought conditions.  As studies of
deluges on soil moisture scarcity trends are sparse, this analysis determines if more frequent 
and larger episodes of extreme rainfall have accelerated dry conditions and to what extent, 
when applicable.  Although these findings are state-specific, the use of publicly available 
datasets enables this analysis to be transferrable to any location or region with comprehensive, 
reliable climate observations

2. Materials and Methods
As extreme precipitation has become more frequent and heavier, a trend projected to 

continue, a greater amount of moisture that hits unsaturated soil surfaces would be expected 
to flow off rather than being absorbed and replenishing vegetative demand.   The runoff 
becomes increasingly consequential as a greater percentage of precipitation exceeds the hourly
soil infiltration rate.   This section describes how hourly precipitation data, local soil infiltration 
capacities, and daily climate parameters at 12 locations were utilized by complementary 
algorithms to determine trends in eastern Texas soil moisture scarcity as measured by 
supplemental water demand.  Figure 1 shows a summary flow chart of the forthcoming 
methods.  

Fig. 1 Summary flow chart of the methodology, conducted for the 10th, 50th, and 90th-percentile 
soil classes at 12 locations, assuming the soils are below field capacity (arrows are not to scale 
and represent the flow of moisture relative to the ground surface).     
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2.1 Soil Moisture 
Location-specific soil moisture levels in eastern Texas were determined by subtracting 

daily evapotranspiration rates, as calculated from the FAO-56 Penman-Monteith (PM) equation 
(Zontarelli et al. 2020), while adding daily precipitation reported by the Global Historical 
Climatology Network (GHCN), a highly accurate dataset maintained by the National Centers for 
Environmental Information (NCEI).  The FOA-56 PM equation utilizes four climate parameters 
(humidity, temperature, wind, and solar radiation) as well as a latitude and elevation to 
calculate a simplified yet accurate representation of the determining physical and physiological 
components of the evapotranspiration process.  Dewpoint temperature (needed for relative 
humidity), air temperature, and wind data were obtained from NCEI’s Global Summary of the 
Day (GSOD) network.  Solar radiation values are not tracked by the NCEI, so daily North 
American Regional Reanalysis (NARR) values were used (Mesinger et al. 2006).  The assumed 
soil surface covering was well-watered, clipped, cool-season fescue grass 0.12 m in height 
(Wright 1993).  An adjustment was made for days during which the average temperature 
remained below 4.5 °C and grass growth was stymied (Jensen and Allen 2020).  Accurately 
calculating plot-specific ET0 requires detailed land-use data and information on planting and 
harvesting cycles as well as crop growth, surface cover, wind resistance, and albedo.  Therefore,
a standard reference surface covering was chosen.    

Reference evapotranspiration assumes unlimited water availability for optimal plant 
growth and is greater than evapotranspiration occurring when the vegetative covering has a 
constricted moisture supply during dry conditions.  As fescue grass roots were assumed to 
penetrate the ground to a depth of one meter, the U.S. Department of Agriculture’s Web Soil 
Survey (WSS) tool (USDA 2019) was consulted to determine the total available moisture 
capacity in the top one meter of soil.  At the 12 locations (Figure 2), chosen by criteria explained
later in this section, a 40,000-hectare plot (approximately 100,000 acres) was selected and the 
total available water (TAW) supply by soil type was obtained for the one-meter surface depth.  
Within the WSS database of soil types, each plot has a specific field capacity value (the total 
amount of water in mm the saturated plot holds) and a wilting point (the amount of water 
when moisture transfer is halted, also given in mm of moisture).  The difference between the 
two values is each site’s TAW.  Under water-constricted conditions, evapotranspiration is equal 
to ET0 until 40 percent of TAW, also known as the readily available water content (RAW), is 
depleted.  At that point, a stress coefficient, K s ,t (Equation 1) curtails the moisture transfer.  If 

no water is introduced into the ground during this period, the value of K s ,t reaches zero at the 
wilting point, with vegetation suffering irreparable damage at K s ,t values below 0.2 (Wright 
1993). 

where t={1January 1979 ,…,31December 2020 }

ASMDt− 1represents the previousday
' saccumulated soilmoisture deficiency .
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2.2 Station Selection Criteria and Data Homogenization 
As the above calculations were paired with hourly precipitation data, NCEI’s Integrated 

Surface Database (ISD) precipitation gauge network was examined for candidate stations having
sufficient coverage.  Within the eastern half of Texas and extreme northwest Louisiana, 12 ISD 
stations (Table 1, Figure 2) had greater than 95 percent coverage without showing a time-
related bias; that is, when the number of missing records per year was regressed against its 
position in the analysis period timeline, none showed a statistically significant correlation.  This 
was a perquisite for inclusion since hourly precipitation totals were matched with GHCN daily 
data, and incomplete ISD data would bias the extreme precipitation absorption curtailment 
multiplier calculations (to be described later in the section). Hourly values were extracted from 
raw ISD records and given Central Standard Time timestamps.  A basic test for trends in average
annual precipitation intensity was completed. 

  

Table 1 Observation sites, East to West (GHCN, GSOD, and Integrated Surface Database (ISD) 
networks)

Station Name Lat. Long. Station Name Lat. Long.

1. Shreveport Regional AP, LA 32.45 -93.82 7. Brownsville/SPI Int’l AP, TX 25.91 -97.42

2. Port Arthur/ SE TX Regional AP, TX 29.95 -94.02 8. Corpus Christi Int’l AP, TX 27.77 -97.51

3. Houston Intercontn’l Airport, TX 29.98 -95.36 9. San Antonio Int’l AP, TX 29.54 -98.48

4. Victoria Regional AP, TX 28.86 -96.93 10. Wichita Falls Muni. AP, TX 33.98 -98.49

5. DFW Int’l AP, TX 32.90 -97.02 11. Abilene Regional AP, TX 32.41 -99.68

6. Waco Regional AP, TX 31.62 -97.23 12. San Angelo Mathis Field, TX 31.35 -100.50

The 1979-2020 daily climate parameters imputed into the FOA-56 PM were homogenized 
by the Climatol algorithm (Guijarro 2019).  It was not coincidental that all of the 12 stations 
with comprehensive ISD hourly coverage were located at large regional or international 
airports, also containing near-complete GHCN and GSOD series.  To infill isolated missing daily 
observations, Climatol searched a cluster of the neighboring stations for the closest reporting 
value available. This closest value is not used directly, but as ratio to the mean of the series. 
After acquiring all records from the 12 GHCN and GSOD clusters, Climatol aggregated the daily 
data into monthly series and deployed the Standard Normal Homogeneity Test (SNHT), a 
procedure developed by Alexandersson in 1986 using a series of ratios that compare the 
observations of one measurement site with the cluster average to determine discontinuities 
within the aggregate means.  
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Fig. 2 Easternmost (1) to westernmost (12) observation sites, as referenced in all figures, with 
global soil classifications 

Using an SNHT threshold of 25, Climatol identified breakpoints for each station, splitting 
the series at such occurrences.  This is the default value of the algorithm, and while a bit 
conservative, has been established over the years to minimize the detection of false jumps in 
the average at the expense of missing jumps of minor importance (Guijarro 2021). The result 
was two or more partial subseries, that were reconstructed as multiple series to have a 
complete record throughout the 43-year period.  The reconstruction mitigated potential bias 
from site-specific conditions and incomplete reporting histories by using normalized values with
neighboring stations.  The reader is referred to Smith et al. (2020) for a more comprehensive 
description of Climatol’s role in regional soil moisture analysis.  Although this study utilized 
certified data, inhomogeneities arise when instruments are moved, replaced, or obstructed 
(Groisman and Legates 1994). 

All reconstructed daily series were fed into the soil moisture algorithm (Figure 1), where 
daily K s ,t values were calculated based on the proportion of the total available water supply 
that had been depleted.  After 40 percent of the TAW had been exhausted, the 
evapotranspiration rate during subsequent days was given by K s ,t∗ET 0.  On days when 
precipitation fell or predetermined irrigation water amounts were added, depleted TAW was 
replenished until field capacity was reached, at which time the amount remaining was 
presumed to flow off the surface or percolate through the soil.  This precludes rain that falls on 
saturated soils from augmenting soil moisture supply, but infiltration rates must be considered 
to determine the fraction of rainfall able to replenish TAW without running off.  
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2.3 Infiltration Rates and Hourly Runoff
Measuring infiltration rates across large areas is challenging due to inhomogeneous 

soils, and an explanation of the assumptions used in this analysis is provided in this subsection. 
Saturated hydraulic conductivity (K sat) rates for the same Web Soil Survey (USDA 2020) plots 
from which TAW values were obtained and assumed to represent the maximum steady-state 
infiltration of each soil type.K sat values cannot be averaged and varied widely across each plot: 
flat areas with sandy soils have steady-state infiltration rates exceeding 50 mm per hour 
whereas hilly terrain with clay soils often absorb less than 2.5 mm of moisture during the same 
timeframe.  Areas unsuitable for the reference grass surface covering were excluded from the 
Web Soil Survey results, and K sat  values with corresponding TAW data from the remaining soil 
types were partitioned into 10th, 50th, and 90th-percentile values at each of the 12 climatological 
observation sites.  These classifications represented the diversity of infiltration capacity within a
relatively small distance and the uncertainties associated with the Web Soil Survey K sat  values 
and their representation of real-world infiltration.  Displayed in Figure 2, eastern Texas soils are 
comprised of Alfisols, Inceptisols, Mollisols, Ultisols, and Vertisols (USDA 2020).  While 
topographical variation plays a small role in infiltration capacity, soil consistencies are highly 
diverse, as can be seen in Table 2, which matches each percentile K satvalue to a corresponding 
Web Soil Survey description of a known soil type within each site’s surrounding area of interest.

Web Soil Survey K sat  values originate from modified Uhland and O’Neal experimental 
results (USDA 2003; Uhland and O’Neal 1951), with topography considered.  When a local soil 
survey is conducted, oftentimes less than once per decade, the majority soil type in each 
irregular subplot is represented.  Approximately 10-30 unique K sat  subplot rates were reported 
for a 40,000-hectare site.  This discretized mosaic is a simplified representation of the naturally 
blended soils.  Moreover, observed K satvalues and the time during a wetting event at which 
they are observed are highly dependent on soil surface coverings (Rawls et al. 1993). Uhland 
and O’Neal’s methodology measured the infiltration of water atop the soil and therefore did 
not account for runoff attributable to partial or complete crusting as heavy precipitation hits 
bare surfaces.  This analysis assumed a grassy surface covering, which better approximated the 
experiments from which the Web Soil Survey values were obtained.  Accurate infiltration curves
for cultivated areas must consider the seasonality of crop cycles, tillage methods, and 
harvesting processes.  Since such conditions can vary during different growing seasons, field
K sat  observations are nontransferable (Rawls et al. 1982).  

The second part of this discussion addresses the use of K sat  as the assumed infiltration 
rate when estimating the amount of heavy precipitation that is lost to runoff.  For each day 
during the 1979-2020 analysis period, the proportion of daily precipitation that exceeded the 
10th, 50th, and 90th-percentile K sat  values at the observation plots was quantified.  The 
deployment of this rate in the analysis implicitly assumed a constant rainfall intensity over the 
one-hour time slice.  Whenever the observed value was greater than the predetermined K sat  
threshold, all remaining water hitting the ground within that hour was ineligible to replenish 
soil moisture deficits and was assumed to run off the surface as shown in Figure 1.  For the 
curtailment factor, C t , k, let Ph ,t ,k  equal the amount of precipitation falling in hour h on day t  at 
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location k , obtained from the ISD network.  Then for all Ph ,t ,k>K sat, daily runoff, Qh , t ,k , is given 
by the following:

(2 )Qh ,t ,k=∑
h=1

24

Ph ,t , k− K sat

 Table 2 USDA Web Soil Survey 10th, 50th and 90th infiltration percentile soil type descriptions 

Stn. 10th -percentile Description 50th -percentile Description 90th -percentile Description 

1 Wrightsville-Timpson 
complex, 0 to 1 percent 
slopes

Metcalf-Timpson complex, 
0 to 2 percent slopes

Bowie fine sandy loam, 1 to 
5 percent slopes

2 Franeau clay, 0 to 1 
percent slopes, 
occasionally flooded

League clay, 0 to 1 percent 
slopes

Meaton-Levac complex, 0 
to 1 percent slopes, rarely 
flooded

3 Cyfair-urban land complex,
0 to 1 percent slopes

Clodine-urban land 
complex, 0 to 1 percent 
slopes

Addicks loam, 0 to 1 
percent slopes

4 Laewest-urban land 
complex, 0 to 3 percent 
slopes

Telferner fine sandy loam, 0
to 1 percent slopes

Inez fine sandy loam, 0 to 2 
percent slopes

5 Ferris-urban land complex,
5 to 12 percent slopes

Crosstell fine sandy loam, 3 
to 8 percent slopes

Gasil fine sandy loam, 3 to 8
percent slopes

6 Sanger clay, 1 to 3 percent 
slopes

Frio silty clay, 0 to 1 percent
slopes, occasionally flooded

Chazos loamy fine sand, 1 
to 3 percent slopes

7 Harlingen clay, 0 to 1 
percent slopes

Sejita silty clay loam, 0 to 1 
percent slopes, occasionally
ponded

Rio Grande silt loam, 0 to 1 
percent slopes

8 Aransas clay, 0 to 1 
percent slopes, slightly 
saline, moderately sodic, 
frequently flooded

Aransas clay, 0 to 1 percent 
slopes, slightly saline, 
moderately sodic, 
frequently flooded

Orelia fine sandy loam, 0 to 
1 percent slopes

9 Houston Black clay, 3 to 5 
percent slopes

Austin silty clay, 2 to 5 
percent slopes, moderately 
eroded

Whitewright clay loam 1 to 
5 percent slopes

10 Mangum silty clay loam, 2 
to 5 percent slopes

Winters loam, 1 to 3 
percent slopes

Yomont very fine sandy 
loam, moist, 0 to 1 percent 
slopes, occasionally flooded

11 Tobosa clay, 0 to 1 percent
slopes

Sagerton loam, 1 to 3 
percent slopes

Clairemont silty clay loam, 0
to 1 percent slopes, 
occasionally flooded

12 Rioconcho and Spur soils, 1
to 5 percent slopes

Angelo clay loam, 0 to 1 
percent slopes

Cho-Vernon complex, dry, 1
to 8 percent slopes
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Then curtailment factor C t , k can be expressed by 

(3 )Ct ,k=1−
∑
h=1

24

Qh, t , k

∑
h=1

24

Ph ,t ,k

.

For days during which the K sat  threshold was not exceeded, C t , k=1, and the total amount of 
precipitation was available to recharge soil moisture as it was in the reference scenario, 
assuming the soil was below field capacity.  Otherwise, the amount of water absorbed into the 
one-meter root zone was reduced by C t , k.    

 Infiltration capacities as a function of time during events are often estimated by theory-
based models developed by Green-Ampt (Nearing et al. 1993) and Philip (Bach et al. 1986).  
Such models deploy several parameters (effective suction, soil porosity, initial water content, 
etc.) when calculating how much moisture is absorbed by the soil.  With time, maximum 
infiltration declines exponentially as the wetting front moves deeper into the subsurface, 
approaching a horizontal asymptote, K sat , after several hours, once the surface layer becomes 
saturated.  If an intense downpour falls on dry soil, ground infiltration capacity begins at high 
levels and rapidly declines within the first hour.  Over the next several hours, the curve’s slope 
approaches zero at K sat .  Use of K sat  therefore underestimated infiltration for downpours falling
on dry soil and occurring at the beginning of wetting events.  If heavy precipitation immediately 
followed previous rains, there would be minimal distance between the observed infiltration and
the assumed K sat  rate.  

2.4 Hypothetical Irrigative Water Demand
Moisture scarcity was represented by the amount of hypothetical irrigation water that 

was introduced to preserve the fescue grass in a healthy state: when K s ,t≤0.7 (Wright 1993), 
the algorithm introduced 25.4 m m (one inch) of moisture.  For days that met this criterion 
when precipitation was reported, the irrigation amount was reduced by the amount of 
absorbed rain, unless daily adjusted rainfall exceeded 25.4 mm in which case no supplemental 
water was applied.  The total amount of water was aggregated each month and an 
Autoregressive (AR) time series regression analysis was performed.  The subsequent trends 
were calculated in R, with the AR order determined by the Akaike information criteria.  With 
drought variability increasing, instances of heteroskedasticity were found during AR modeling.  
The Breusch-Pagan Test, which uses the Chi-Square test statistic on a subsequent regression of 
squared residuals, was deployed to all seasonally-adjusted regressions and when it showed a 
time-varying variance, a robust standard error procedure was completed that provided 
corrected significance levels of the regression coefficients.  Statistical significance in this 
analysis was defined when p≤0.1.  

2.5 Validation 
The crux of the analysis lies in its ability to estimate soil moisture levels with a simplified 

methodology.  Without adjusting for precipitation rates, the estimations performed better than 
an alternative, and improved accuracy was gained after incorporating intensity-induced runoff.  
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To demonstrate this, quality-controlled observed ground moisture values from NCEI’s U.S. 
Climate Reference Network (USCRN) were obtained.  The network measures water content 
directly from the subsurface rather than derived calculations from climate parameters (NOAA 
2003).  The data is highly accurate but sparse, as there are there only four Texas stations within 
the analysis area offering relatively complete observations: Austin, Bronte, Edinburg, and 
Palestine (Table 3).  USCRN sites are also GHCN and GSOD stations, so daily climate 
observations were inputted into the soil moisture algorithm, with missing values again supplied 
by the closest GHCN or GSOD stations.  Estimates from the algorithm were used to predict the 
USCRN observations.  As a comparison, derived soil moisture values from the Climate Forecast 
System Reanalysis (CFSR) were also deployed as predictors for the same USCRN dataset.  Both 
regressions covered a ten-year timeframe (2011-2020) due to the unavailability of earlier 
USCRN data.  As columns 2 and 3 of Table 3 show, the uncurtailed algorithm estimates 
performed better than those of the CFSR, as measured by the R-squared degree of fit.   

Table 3 R-squared values of 2011-2020 parameter-derived soil moisture estimates, relative to 
USCRN observations 

USCRN Station USCRN~CFSR, R-sq USCRN~FAO-56, R-sq USCRN~Adj. FAO-56, R-sq

Austin (30.62, -98.08) 0.69 0.72 0.74

Bronte (32.04, -100.24) 0.58 0.66 0.67

Edinburg (26.52, -98.06) 0.54 0.72 0.73

Palestine (31.77, -95.72) 0.69 0.59 0.59* 

(*sandy soils at this location have a K sat  value that exceeded all 2011-2020 precipitation rates)

USCRN stations also record hourly precipitation, and intensities that exceeded the site-
specific K sat  values as provided by NCEI were precluded from replenishing soil moisture deficits 
by reapplying a daily curtailment factor.  Due to the high absorption rate of the soil beneath the
Palestine station (91.5 percent sand), the adjustment was only applicable at three stations.  
While conclusions are limited from a modest improvement in capturing real-world conditions at
three sites, accounting for intensity-induced runoff improved the algorithm’s accuracy (Table 3, 
Column 4). 

3. Results 
Eastern Texas has become warmer, with all regions showing statistically-significant 

positive trends in average temperature from 1979 through 2020.  Along with universal positive 
solar radiation trends, the warming has driven reference evapotranspiration rates higher at all 
12 stations; five showed statistical significance (Stations 1, 5, 6, 9, 10).  Precipitation trends 
were mixed, with five sites receiving more rainfall over the analysis period and seven recording 
less (Figure 3). As measured by ISD values, nine stations had positive intensity trends (annual 
precipitation divided by the number of hours during which it fell), although only one was 
statistically significant.  A comparison of average 1979-2020 intensities and wetting hours are 
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presented in Figure 4. All subsequent figures display annual trends aggregated over the analysis
period and do not represent historical values but rather initial and terminal expected normal 
conditions based on the calculated trends.  

Fig. 3 Moving East to West, modeled 2020 average annual reference evapotranspiration and 
precipitation change, compared with modeled 1979 values (fill denotes statistical significance) 
(mm) 

Fig. 4 Average 1979-2020 rainfall intensity (mm hr-1) and average number of annual wet hours 
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The amount of water to preserve the reference surface grass in a well-watered state, a 
proxy for soil moisture scarcity, was calculated by the temporal balance between precipitation 
and evapotranspiration. With the first year of data (1979) omitted to subsequently calibrate 
root zone moisture levels, all observation sites showed positive trends from 1980-2020 (Figure 
5).  The increasing occurrence of aridity, even in regions where higher average amounts of 
precipitation are falling, was anticipated and agreed with earlier studies.  Trends at five 
locations (1, 5, 6, 9, 10) were statistically significant.  The findings were solely attributable to 
higher evaporative demand, as runoff had not yet been incorporated . 

    

Fig. 5 AR modeled 2020 and 1980 average annual hypothetical vegetative water demand (mm) 

Modeling runoff from extreme hourly precipitation events generally accelerated 1980-
2020 drying trends, but the mixed results require interpretation.  The amount of hourly 
accumulated precipitation that fell below the 10th, 50th, and 90th percentile K sat  thresholds are 
listed in Table 4, and vary widely based on the soil composition of each 40,000-hectare plot.  In 
isolated instances, site infiltration rates at different percentiles were identical or similar if a 
specific soil type constituted a large proportion of the total.  After the exclusion of unsuitable 
areas, such as quarries, muck pits, and sand, the 10th percentile soil classes were generally clays,
transitioning to loam as the percentiles rose, with sandy and gravely soils comprising the 90th 
percentile classes, again shown in Table 2.  Impacts on hypothetical irrigation time-series trends
are shown in Figure 6 (modeled AR difference in expected irrigation demand at the end of the 
analysis period relative to the beginning), Figure 7 (the same information with only statistically 
significant trends displayed), and Figure 8 (the 1980-2020 expected difference when compared 
to the uncurtailed infiltration data over the identical timeframe).  For 10th percentile K sat  values,
six of 12 stations showed decreases in the rate of drying relative to unrestricted hourly 
infiltration.  The five stations with statistically significant 1980-2020 growth in water demand, 
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Stations 1, 5, 6, 9, and 10, retained their significance.  Using 50th percentile infiltration rates, 
eight of 12 stations had accelerated drying, with two additional sites, Station 2 and 4, having a 
significant, positive trend.  Finally, with 90th percentile soil class infiltration capacities, all seven 
stations with different trends from the unrestricted scenario showed increases in soil moisture 
deficits (Figures 7 and 8).  As Table 4 illustrates, 90th percentile K sat  values for the remaining five
locations are so high that these soils absorbed more than 99.5 percent of total 1979-2020 
accumulated precipitation.  The negligible to nonexistent extreme episodes that exceeded the 
thresholds were not sufficient to cause a measurable impact on trends.  Although none of the 
12 locations showed a decrease in the rate of drying relative to the reference scenario for this 
percentile, differences in the magnitude of change are expectedly small due to the rarity of 
such intense deluges.   

Table 4 Percentage of 1979-2020 precipitation eligible to recharge soil moisture levels by K sat  
percentile value  

Station / percentile 10th 50th 90th Station / percentile 10th 50th 90th 

1. Shreveport Regional AP 75.5% 94.7% 99.9% 7. Brownsville/SPI Int’l AP 26.9% 81.4% 100.0
%

2. P. Arthur/ SE TX Reg. AP 20.1% 20.8% 87.2% 8. Corpus Christi Int’l AP 45.8% 45.8% 80.2%

3. Houston Intercontn’l AP 76.9% 90.1% 98.6% 9. San Antonio Int’l AP 27.0% 52.7% 98.2%

4. Victoria Regional AP 24.6% 63.8% 99.7% 10. Wich. Falls Muni. AP 56.0% 94.0% 99.4%

5. DFW Int’l AP 26.9% 73.0% 100.0% 11. Abilene Regional AP 30.4% 97.3% 99.0%

6. Waco Regional AP 26.9% 86.1% 99.6% 12. S. Angelo Mathis Field 29.6% 93.9% 99.5%

Fig. 6 Comparisons of AR modeled 1980-2020 change in hypothetical irrigative water demand 
by soil infiltration rate ) percentile (mm)
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Fig. 7 Statistically significant comparisons of AR modeled 1980-2020 change in hypothetical 
irrigative water demand by soil infiltration rate ) percentile (mm)

Fig. 8 10th, 50th, and 90th K sat  percentile 1980-2020 change in hypothetical irrigative water 

demand, relative to unrestricted infiltration (with 
N
C  signifying no change) 

4. Discussion
4.1 Interpretation of Results 

Upon first inspection, the mixed results in Figure 8 relative to the unrestricted hourly 
absorption baseline may appear to suggest that increases in extreme precipitation have not 
exacerbated soil dryness.  In fact, different soil classes were affected in unique ways by the 
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increased frequency and magnitude of heavy downpours.  Since the observation sites in east 
Texas have not shown consistent trends in accumulated precipitation, augmented intensities 
equated to fewer hours of recorded rain: AR modeling of the number of precipitation hours 
showed declines at 11 of 12 stations, although none was statistically significant.  The absorptive
capacity of clay soils represented by the station-specific 10th percentiles are low – in some cases
approximately one mm hour-1— so the majority of light and moderate rainfall flows off the 
surface (Wilcox et al. 2007).  As the number of hours during which rain fell declined, there were
fewer such occurrences.  With stable precipitation amounts, this decrease would be 
counteracted by heavier events, however low infiltration rates already preclude all but a small 
proportion from penetrating the ground surface.  Neither of the opposing factors was dominant
at the observation sites, as shown by the even divide in accelerated drying among 10th 
percentile soil classes.  

For more porous soils, runoff potential from intense downpours was more consequential 
than the curtailment in the number of events.  The higher absorption rates of these 50th and 
90th percentile soil classes equated to less frequent runoff occurrences throughout the analysis 
period, so the increased volume from individual episodes grew in importance.  It is also noted 
that three of the four stations with decelerating 50th percentile trends relative to the baseline 
had negative precipitation trends with respect to time, further curtailing runoff opportunities.  
At the 90th percentile, the capacity of sandy soils to absorb all but the most extreme episodes 
diminished the magnitude of trend acceleration, as there were smaller differences with the 
unbounded reference case, but added clarity with respect to the positive trend signals at all 
locations that showed change.    

This interpretation is summarized in Figure 9: a scatterplot that displays the results 
differently from the previous figures.  Its x-axis, average annual precipitation, spatially 
differentiates the 12 stations.  The y-axis, measuring K sat, was truncated above 50 mm per 
hour: stations with 90th percentile infiltration rates exceeding that value are shown at the top of
the plot.  There are therefore 36 dots representing the 10th, 50th, and 90th infiltration percentiles
for the 12 stations, although when a station’s K sat  values were similar at different percentiles, 
the dots cannot be visually distinguished.  The color of each dot is determined by the change in 
hypothetical irrigative water demand, as shown in Figure 8.  No change is represented by a 
colorless dot.  A positive (negative) change in demand is represented by blue (red) fill – the 
greater the magnitude of change, the deeper the shade of color.  For example, the wettest and 
driest stations, #2 and #12, respectively, had increased demand for all three percentile classes . 
This is represented by positive bars in Figure 8 and blue dots at the left and righthand ends of 
the scatterplot (Figure 9).  Shreveport (Station 1), the second-wettest location, had the largest 
overall drop in irrigative demand for its 10th percentile soils, shown by the negative bar in Figure
8 and as the deep-red dot located at the coordinates (1301, 12) in Figure 9.  As the Figure 
reveals, absorptive soils, regardless of their respective percentiles, did not experience large 
irrigative demand reductions – notwithstanding the singular aforementioned exception at 
Shreveport: five of the six largest demand reductions were seen in soils with K sat  values below 
4.5 mm per hour.          
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Fig. 9 Scatterplot of the 10th, 50th, and 90th K sat  percentile 1980-2020 change in hypothetical 
irrigative water demand: blue denotes positive change, red denotes negative change.   

4.2 Limitations of the Analysis  
While it is an important distinction for water supply security and flood mitigation planning 

whether the moisture hitting the ground percolates through saturated soils or exceeds the 
infiltration rate and flows off the surface, this algorithm represented both events under the 
same classification: ineligible to recharge moisture in the vegetative root zone.  High-quality 
gridded data products available for use in daily, weekly, or monthly trend analysis are not 
available for hourly precipitation over a four-decade period.  More recent high-resolution 
products exist using analyzed historical radar data, such as the NEXRAD Level III sets, but the 
earliest sites began reporting in the early 1990s, and many did not come online until the middle
or later portion of that decade (NOAA 2020).    The reconstructed GHCN, GSOD, and ISD hourly 
sets utilized in this analysis are highly reliable and have a 43-year period of continuous 
reporting, but resulted in a small sample.  

In addition to the low number of climatological reporting stations, uncertainties and 
complexities associated with infiltration rate calculations also posed difficulties when relating 
the analysis to real-world conditions.  Real-time infiltration is a function of initial soil moisture, 
and the daily algorithm could not capture precise conditions at the start of each event.  There 
are also soil behaviors that the Uhland and O’Neal methodology did not capture such as the 
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absorption-impeding surface crust that forms during heavy episodes.  Highly-impenetrable clay 
soils are prone to deep cracking, providing enhanced but variable infiltration opportunities that 
are not easily replicated in laboratory experiments (Rawls and Brakensiek 1989; Matlack et al. 
1989; Bronswijk 1987).  For the 40,000-hectare plots, percentiles were used to communicate 
ranges of uncertainty.  Determining the average infiltration rate for the 12 areas of interest is 
appropriate due to the factors discussed earlier, but the absence of a single number can be 
unsatisfying when it precludes sweeping characterizations and succinct conclusions.  For 
stakeholders, average calculations can present challenges based on their interpretations: an 
urban planner may find mean values useful for water management, while a farmer cultivating 
vegetation on clay soils may be misled by a singular number.  As noted, the infiltration rate can 
vary by several orders of magnitude based on the seasonality of crop cover, tilling 
methodology, and harvesting cycle, while soil composition remains constant (Dabney 1998).  

5. Conclusion
Eastern Texas has become more arid over the past four decades even though annual 

expected precipitation has not declined.  Higher temperatures have enhanced reference 
evapotranspiration, and together with the timing of rainfall events, soil moisture deficits have 
deepened.  

As each soil class responds differently to more precipitation falling during fewer hours, 
the impacts varied.  For loamy and sandy soils in the 50th and 90th percentiles, consideration of 
hourly runoff resulted in accelerated drying for 15 of the 19 cases that had different trends 
relative to the unconstrained assumptions (Figure 8).  Even though the accelerated drying was 
modest and only statistically significant in once instance, the analysis opened several avenues 
of further investigation.  Especially in wetter areas that are vulnerable to water supply 
insecurity and have high demand from municipal and agricultural usage, the increasing 
proportion of extreme precipitation that does not replenish soil moisture and instead runs off 
should be factored into projections that quantify the growing risk of drought in spite of stable 
or rising average annual precipitation.  As much of Eastern Texas is a low-lying area reliant on 
bayou drainage systems, future infrastructure projects should also account for the higher 
amounts of runoff water expected in the future if current trends continue.    

Data Availability Statement:
All climate data (Global Historical Climatology Network, Global Summary of the Day, Integrated 
Surface Database, and U.S. Climate Reference Network) is publicly available and was obtained 
from the National Centers for Environmental Information (https://gis.ncdc.noaa.gov/maps/ncei,
https://www.ncdc.noaa.gov/crn), with the exception of solar radiation data, publicly available 
at http://climateengine.org. 
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