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Abstract 

 

A new model for the numerical simulation of a rigid body moving in a viscous fluid flow using 

FEM is presented. One of the most interesting features of this approach is the small 

computational effort required to solve the motion of the rigid body, comparable to a pure fluid 

solver. The model is based on the idea of extending the fluid velocity inside the rigid body and 

solving the flow equations with a penalty term to enforce rigid motion inside the solid. In order 

to get the velocity field in the fluid domain the Navier-Stokes equations for an incompressible 

viscous flow are solved using a fractional-step procedure combined with the two-step Taylor-

Galerkin for the fractional linear momentum. Once the velocity field in the fluid domain is 

computed, calculation of the rigid motion is obtained by averaging translation and angular 

velocities over the solid. One of the main challenges when dealing with the fluid-solid 

interaction is the proper modelling of the interface which separates the solid moving mass from 

the viscous fluid. In this work the combination of the level set technique and the two-step 

Taylor-Galerkin algorithm for tracking the fluid-solid interface is proposed. The characteristics 

exhibited by the two-step Taylor-Galerkin, minimizing oscillations and numerical diffusion, 

make this method suitable to accurately advect the solid domain avoiding distortions at its 

boundaries, and thus preserving the initial size and shape of the rigid body. The proposed model 

has been validated against empirical solutions, experimental data and numerical simulations 

found in the literature. In all tested cases, the numerical results have shown to be accurate, 

proving the potential of the proposed model as a valuable tool for the numerical analysis of the 

fluid-solid interaction. 
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1. Introduction 

 

Movement description of immersed bodies is present in several industrial processes 

(sedimentation procedures, metallurgical industry, etc.), but it is also of great interest in 

different scientific areas, such as geological sedimentation processes, asteroid impacts or fluvial 

transport and deposition, to name a few. In most of these cases, it becomes necessary the study 

of the interaction among a set of rigid bodies immersed in a fluid flow. To this end, and as a 

starting point, one single rigid body dynamics is usually analysed. Despite of the large number 

of works addressing this issue in the last years, development of new models capable to 

accurately deal with this problem is still a challenge nowadays. 

 

Modelling the motion of an immersed body in a fluid flow requires the solution of the coupled 

fluid and solid dynamics. In addition to that, a procedure must be provided for the tracking of 
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the solid position in time, preserving its volume and shape. Many efforts have been devoted in 

the last years to solve these issues. 

 

In order to track the fluid-solid interface, some formulations have been proposed in the past 

within the frame of classical mesh-based methods. The deformable spatial domain [1] and the 

arbitrary Lagrangian-Eulerian formulations [2-4] intended to describe the body position by just 

moving the mesh. However, these methods presented some problems when a high relative 

motion among the bodies occurred. To circumvent this issue, an improved mesh updated 

method was introduced by Behr and Tezduyar [5]. Nevertheless, many alternative formulations 

were proposed in order to avoid the numerical inconveniences of remeshing. In this context the 

immersed boundary method [6-9] and the fictitious domain method [10-16] are especially 

remarkable. In the fictitious domain method, the fluid motion equations are extended inside the 

solid particles’ domains. Lagrangian multipliers are defined in the rigid bodies domains to 

match over these regions the fluid flow and solid motion velocities. Some other formulations, 

however, combine techniques to describe the surface of the particles along with the Lattice 

Boltzmann method to solve the dynamics of the problem in a fixed mesh [17-20]. In addition, a 

wide variety of meshfree methods have been proposed over the last years: diffuse element 

method [21], element free Galerkin method [22-23], reproducing kernel particle method [24-

25], h-p cloud method [26], partition of unity method [27], meshless local Petrov–Galerkin 

method [28], finite point method [29], radial basis function [30-31], Smoothed Particle 

Hydrodynamics (SPH) [32-38] or Taylor-SPH [39-43], among others. The main advantage of 

meshfree methods is that numerical solutions can be achieved without using a computational 

grid, thus dealing in a straightforward manner with particle tracking and therefore avoiding 

some of the difficulties encountered in classical mesh-based methods. However, most of these 

meshless methods present other numerical issues, such us smearing in their solutions, lack of 

consistency or problems when dealing with boundary conditions. 

 

In this paper a numerical model for the direct computational simulation of freely moving rigid 

bodies in fluids using the Finite Element Method (FEM) is presented. The proposed 

computational algorithm is based on the idea of extending the fluid velocity inside the rigid 

body and solving the flow equations with a penalty term to enforce rigid motion inside the solid 

[15-16]. One of the most interesting features of this approach is that the low computational 

effort required to solve the motion of the rigid body is similar to that of a pure fluid solver [15]. 

In order to get the velocity field in the fluid domain, the Navier-Stokes equations for an 

incompressible viscous flow are solved using the fractional-step procedure proposed by Chorin 

[44] combined with the two-step Taylor-Galerkin [45-56] to solve the fractional linear 

momentum equation. Once the velocity field in the fluid domain is computed, calculation of the 

rigid motion is obtained by averaging translation and angular velocities over the solid. One of 

the main problems found in the fluid-solid interaction is the proper modelling of the interface 

which separates the solid moving mass from the viscous fluid. In this work the combination of 

the level set technique [16,45,57-61] and the two-step Taylor-Galerkin algorithm for tracking 

the fluid-solid interface is adopted [45-56]. The characteristics exhibited by the two-step Taylor-

Galerkin [47-56], minimizing oscillations and numerical diffusion, make this method suitable to 

accurately advect the solid domain avoiding distortions at its boundaries, and thus preserving 

the initial size and shape of the rigid body. 

 

The paper is structured as follows. First, the mathematical model and the proposed 

computational algorithm are presented in Section 2. Next, in Section 3, the Navier-Stokes 

equations are discretized, velocity in the solid domain is obtained and the rigid body properties 

are advected by means of the level set technique. To demonstrate the performance of the 

proposed method, some numerical examples are presented in Section 4, which is followed by 

the final conclusions in Section 5. 
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2. Mathematical model  

 

Let us consider a rigid solid S(t) submerged in an incompressible flow contained in a domain . 

Thus F(t) =  − S(t) is the fluid domain. The fluid-solid interaction problem can be modelled by 

the Navier-Stokes equations in F(t) and the rigid motion of the solid S(t): 

 

𝜌
𝜕𝐮

𝜕𝑡
+ 𝜌 𝑑𝑖𝑣(𝐮 ⊗ 𝐮) = 𝑑𝑖𝑣 𝛔 + 𝜌𝐠 for 𝐱 ∈ F(𝑡) and 𝑡 > 0 (1) 

�̅� = 𝐕 + 𝐖 × (𝐱 − 𝐱𝐺) for 𝐱 ∈ S(𝑡) and 𝑡 > 0 (2) 

𝑀�̇� = − ∫ 𝛔(𝐮, 𝑝) 𝐧 𝑑Ω +
Σ

Mg                                                                                          (3) 

𝐈�̇� = − ∫𝛔(𝐮, 𝑝) 𝐧 × (𝐱 − 𝐱𝐺) 𝑑Ω 
Σ

  (4) 

 

where (t) is the fluid-solid interface, n is the normal pointing towards the solid, g is gravity; 

𝜌(𝐱, 𝑡) and 𝑝(𝐱, 𝑡) are the density and pressure fields; 𝐮(𝐱, 𝑡) and �̅�(𝐱, 𝑡) are the velocities in 

the fluid and solid domains; and M, xG and I are the mass, center of gravity and inertia matrix of 

the solid, respectively.  

 

Equations (3) and (4) translate the solid acceleration as a result of gravity and fluid forces at the 

interface, where the linear and angular velocities are noted as V and W. The stress tensor  is 

defined as 

 σ𝑖𝑗(𝐮, 𝑝) =
𝜇

𝜌
(

𝜕𝑢𝑖

𝜕𝑥𝑗
+

𝜕𝑢𝑗

𝜕𝑥𝑖
) − 𝑝𝛿𝑖𝑗     (5) 

 

being  the dynamic viscosity of the fluid and 𝛿𝑖𝑗 the Kronecker delta. 

 

The above system has to be complemented by the initial and boundary conditions in  and the 

Dirichlet boundary condition on the fluid-solid interface (t). 

2.2. Computational algorithm 

 

The proposed computational algorithm is based on Patankar´s projection method [15-16]. The 

idea consists of extending the fluid velocity inside the solid body and solving the flow equations 

with a penalty term to enforce rigid motion inside the solid. Considering a penalty parameter 

   the momentum equation applicable in the entire domain  can be written as: 

 

𝜌(𝐱, 𝑡)
𝜕𝐮

𝜕𝑡
+ 𝜌(𝐱, 𝑡)𝑑𝑖𝑣(𝐮 ⊗ 𝐮) = 𝑑𝑖𝑣𝛔 + 𝜌(𝐱, 𝑡)𝐠 + 𝜆ℋ(𝐱, 𝑡)𝜌(𝐱, 𝑡)(�̄� − 𝐮)         (6)                                

 

coupled with the incompressibility condition: 

 

𝑑𝑖𝑣 𝐮 = 0 (7) 

 

being: 

ℋ(𝐱, 𝑡) = {
1   𝑖𝑓    𝐱 ∈ S(𝑡)

 0   𝑖𝑓    𝐱 ∈ F(𝑡)
 

 

The penalty method described in (6)-(7) is proved to converge to the solution of the original 

problem (1)-(4) in the limit →∞ [62-63]. Therefore, Dirichlet boundary conditions at the fluid-

solid interface, (t), are no longer required since all the geometric information is now included 

in the ℋ function. The penalization approach proposed herein is physically motivated by the 
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idea that a solid boundary can be modelled as a permeable solid with a very small permeability, 

1/ → 0 [64]. 

 

In the proposed model, the density field, 𝜌(𝒙, 𝑡), can be expressed in terms of an indicator 

function, 𝜙(𝒙, 𝑡), which identifies the portion of the domain occupied by either the solid or the 

fluid (Figure 1).  

 

 
 

Figure 1: Description of each material subdomain using the indicator function, 𝜙(𝒙, 𝑡). 

 

Thus, the density field can be calculated as 

 

𝜌(𝐱, 𝑡) = 𝜌𝑓 + (𝜌𝑠 − 𝜌𝑓)𝐻(𝜙(𝐱, 𝑡))     (8) 

with 

𝐻(𝜙) = {
0 𝑖𝑓 𝜙 ≤ 0 (𝑓𝑙𝑢𝑖𝑑)
1 𝑖𝑓 𝜙 > 0 (𝑠𝑜𝑙𝑖𝑑)

    (9) 

 

where the subscripts, f and s, stand for fluid and solid respectively. 

 

The calculation of the rigid motion ū, is obtained by averaging translation and angular velocities 

over the solid: 

 

�̅� =
1

𝑀
∫ 𝜌(𝒙, 𝑡)𝐻(𝜙)𝒖 𝑑𝛺

𝛺
+ (𝑰−1 ∫ (𝒙 − 𝒙𝐺) × 𝜌(𝒙, 𝑡)𝐻(𝜙)𝒖 𝑑𝛺

𝛺
) × (𝒙 − 𝒙𝐺)     (10) 

 

The rigid body moves with an advection velocity that can be chosen to be either the flow 

velocity u or the rigid motion ū (both values are equivalent just in the limit λ → ∞). However, 

the choice to follow the solid phase with the velocity ū instead of u is recommended here, since 

a strictly rigid motion of the solid is guaranteed, independently on numerical errors, a feature 

which is desirable in practice.  

 

In order to track the solid motion, advection of the solid properties is required. Since density is a 

material property moving with the flow, its material derivative is zero, and therefore: 

 

𝐷(𝜌)

𝐷𝑡
=

𝜕(𝜌)

𝜕𝑡
+ �̄� 𝑔𝑟𝑎𝑑(𝜌)   = 0        𝑓𝑜𝑟 𝒙 ∈ 𝛺 𝑎𝑛𝑑 𝑡 > 0                         (11) 

 

In order to solve above system of equations (6)-(11), the following fractional-step algorithm is 

proposed:  

 

Given a time step t, and being tn = nt, it is possible to go from un ≈ u(・, tn) to un+1 by: 

Fluid 

Solid 
  

  
  

  

 

  

Air

Soil

Water

 ≤  

 >  
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Step 1: Solving Navier-Stokes equation (6)-(7) with λ= 0 for a time step t; �̃�n will be obtained. 

Step 2: Computing �̅�n from (10) after replacing u by the result �̃�n obtained in the previous step. 

Step 3: Solving 

 

𝜌(𝐱, 𝑡)
𝜕𝐮

𝜕𝑡
= 𝜆𝐻(𝜙)𝜌(𝐱, 𝑡)(�̅� − 𝐮)    (12) 

 

for a time step t, and choosing  = 1/t, this step returns 

      

𝐮n+1 = {
�̃�n      𝑖𝑛 F(t)

�̅�n      𝑖𝑛 S(t)
      (13) 

 

It is important to note here that one of the advantages of considering the penalty 

formulation is that the penalty equation (12) can be discretized in time in an implicit 

manner enabling larger penalty coefficients and therefore better accuracy in satisfying 

the interface boundary conditions. On the contrary, explicit time discretization of (12) 

would require smaller values for  than 1/t [16,65-66]. 

 

Step 4: Advecting the indicator function, , with velocity ū will allow the determination of the 

new density field (8), and thus the new position for the solid at tn+1 

 
𝜕𝜙

𝜕𝑡
+ �̅� 𝑔𝑟𝑎𝑑 𝜙 = 0              (14) 

2.3. Modelling the fluid-solid interface via level set technique  

 

One of the main problems found in the fluid-solid interaction is the proper modelling of the 

interface which separates the solid moving mass from the viscous fluid. In this work a level set 

technique has been adopted [45,58-61], which will be described next.  

 

The unsteady flow of the interacting fluid and solid is modelled using equations (6)-(11). For 

the example illustrated in Figure 1, the material property (i.e. density, viscosity), MP, in both 

subdomains may be calculated from  as 

 

𝑀𝑃(𝒙, 𝑡) = 𝑀𝑃𝑓 + (𝑀𝑃𝑠 − 𝑀𝑃𝑓)𝐻(𝜙(𝒙, 𝑡))                                       (15) 

 

Since P is a material property moving with the flow, its material derivative is zero 

𝐷(𝑀𝑃)

𝐷𝑡
=

𝜕(𝑀𝑃)

𝜕𝑡
+ �̄� 𝑔𝑟𝑎𝑑(𝑀𝑃)   = 0                                           (16) 

and considering the dependence of the material properties on the indicator function, (15), this 

condition may be written as 

𝐷𝜙

𝐷𝑡
=

𝜕𝜙

𝜕𝑡
+ �̄� 𝑔𝑟𝑎𝑑𝜙 = 0                                                    (17) 

                                                

which states that the indicator is purely advected by the flow and requires the function H(.) to be 

smooth. 

 

In the case the indicator function, , is a linear function of its position, x, its second order spatial 

derivative is zero and equation (17) is exact, and thus its numerical approximations. Therefore, 

considering  as linear, also benefits the numerical solution of (17) as the front smearing caused 

by low order numerical schemes or the oscillations induced in the high order case will not 
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appear. The simplest linear function is that with slope unity, i.e. the distance function: 
|𝑔𝑟𝑎𝑑𝜙| = 1. 
 

As regards the definition of H(.), equation (9) works well only for small density ratios. For high 

density ratios, it may result in unwanted instabilities in the pressure field giving rise to highly 

inaccurate solutions. This problem is related to the numerical solution of a badly conditioned 

Poisson equation for the pressure [67]. To avoid abrupt changes in the material properties when 

crossing the interface, function H(.) is interpolated through a constant thickness tube of total 

width 2δ surrounding the interface [61], where δ is taken of the order of the mesh size. There 

exist different alternatives for this re-definition of function H(.), such as the simple linear 

interpolation [68] 

𝐻(𝜙) = {

   0 𝑓𝑜𝑟 𝜙 ≤ −𝛿
(𝜙 + 𝛿) 𝑓𝑜𝑟 
1 𝑓𝑜𝑟 𝜙 ≥ 𝛿

− 𝛿 < 𝜙 < 𝛿                                         (18) 

 

However, extra smoothing can be gained considering other functions. This paper considers the 

sine function given below [58] 

𝐻(𝜙) = {

0 𝑓𝑜𝑟 𝜙 ≤ −𝛿

𝑠𝑖𝑛 (
𝜋(𝜙+𝛿)

4𝛿
)  𝑓𝑜𝑟 

1 𝑓𝑜𝑟 𝜙 ≥ 𝛿

− 𝛿 < 𝜙 < 𝛿                                   (19) 

This definition of the interpolation function, based on the distance to the interface, requires 

keeping the indicator function as a distance function. In effect, equation (17) states that the 

indicator is advected by the fluid velocity: as the fluid velocity is not uniform in the domain, the 

initial distance function will be distorted as time progresses and, after some time, it will not be a 

distance function any longer. 

 

This issue can be addressed by using the fluid flow velocity as proposed in equation (17) to 

advect the indicator. Once the indicator is advected, it must be corrected in order to comply with 

the |𝑔𝑟𝑎𝑑𝜙| = 1 condition. This can be achieved by solving at any time t, the following 

problem to steady state [61]: 

𝜕𝜙(�̂�)

𝜕�̂�
+ 𝒮(𝜙(𝑡))|𝑔𝑟𝑎𝑑 𝜙(�̂�)| = 𝒮(𝜙(𝑡))                                       (20) 

with initial conditions 

𝜙(𝒙, �̂� = 0) = 𝜙(𝒙, 𝑡)                                    (21) 

 

being 𝒮(. ) the sign function and �̂� a fictitious time. 

 

Clearly, the steady-state solution of this problem is compliant with the condition |𝑔𝑟𝑎𝑑𝜙| = 1 

and the zero level set of 𝜙(�̂� → ∞) matches that of 𝜙(𝑡). 

 

Equation (20) may be written also as 

 
𝜕𝜙(�̂�)

𝜕�̂�
+ 𝒮(𝜙𝑛)

𝑔𝑟𝑎𝑑 𝜙(�̂�)

|𝑔𝑟𝑎𝑑 𝜙(�̂�)|
𝑔𝑟𝑎𝑑 𝜙(�̂�) = 𝒮(𝜙𝑛)                              (22) 

 

which is an advection problem with velocity 

 

𝒗 = 𝒮(𝜙𝑛)
𝑔𝑟𝑎𝑑 𝜙(�̂�)

|𝑔𝑟𝑎𝑑 𝜙(�̂�)|
                                 (23) 

 

This equation for the velocity indicates that the problem characteristics initiate at the interface 

position and travel with velocity ±1. Therefore, reconstruction of the indicator function as a 

distance function initiates at the interface position and progresses along its outward normal 
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direction. Thus, the critical zone, surrounding the interface position, is reconstructed in the first 

iterations of the solution of problem (22). 

 

This idea may be easily extended to MS solids in a multiphase flow of NF immiscible fluids by 

incorporating NF+MS-1 indicator functions, as it is shown in Table 1. 

 

 Fluid 1 Fluid 2 … Fluid NF Solid 1 … Solid MS 

  ≤     …       …    

  ≤   ≤  …       …    

  ≤   ≤  …       …    

… … … … … … … … 

 NF NF  ≤   NF ≤  …  NF  ≤   NF    …  NF    

 NF+  NF+≤   NF+≤  …  NF+≤   NF+≤  …  NF+  

 NF+  NF+≤   NF+≤  …  NF+≤   NF+≤  …  NF+  

… … … … … … … … 

NF+MS− NF+MS−≤  NF+MS−≤  … NF+MS−≤  NF+MS−≤   NF+MS−   

 

Table 1: Assignment of each material subdomain using NF+MS-1 indicator functions. 

 

However, for a system of MS rigid bodies interacting in an incompressible multi-fluid flow, a 

special method to handle collisions should be designed, which does not fall within the scope of 

this work. Thus, in the following, only one solid immersed in a viscous fluid will be considered. 

 

3. Numerical model 

 

The numerical method used to solve the Navier–Stokes equations (6)-(7) and the advection (17) 

and correction (22) of the indicator function is the two-step Taylor-Galerkin method. This 

method is described in [49], where the interested reader can find the details of the derivation. 

3.1. Step 1: Solving Navier-Stokes equations with λ = 0  

 

In order to solve Navier-Stokes equations (6)-(7) with λ= 0 for a time step t, the fractional-

step procedure proposed by Chorin [44] is followed.  

 

The velocity is decomposed into two parts 

 

Δ𝐮n = Δ𝐮∗,n + Δ𝐮∗∗,n     (24) 

such that 

𝜌
𝛥𝐮∗,𝑛

𝛥𝑡
+ 𝜌 𝑑𝑖𝑣(𝐮𝑛 ⊗ 𝐮𝑛) − 𝑑𝑖𝑣 𝝉𝑛 − 𝜌𝐠𝑛 = 0        (25) 

𝜌
𝛥𝐮∗∗,𝑛

𝛥𝑡
+ 𝑔𝑟𝑎𝑑 𝑝𝑛+1 = 0        (26) 

 

along with the continuity equation 

 

𝑑𝑖𝑣 𝐮𝑛+1 = 0             (27) 

 

being 𝒖∗,𝑛 and  𝒖∗∗,𝑛 the intermediate velocities resulting from (25) and (26) respectively. 

 

Concerning the spatial discretization, 2D linear triangles have been chosen because of their 

numerical efficiency and excellent behaviour in the solution of problems involving strong 

discontinuities [47-48,50-52]. However, Babuska-Brezzi condition [69-70] does not allow the 

use of the same order of interpolation for both velocity and pressure unless a special 
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stabilization technique is used. As it was shown in [49,71], the proposed algorithm provides 

with the required stabilization. 

 

Therefore, above resultant equations from the time discretization, are discretized in space as 

follows: 

 

Step I: Fractional velocity discretization. The fractional linear momentum equation 

  

𝜌
𝛥𝐮∗,𝑛

𝛥𝑡
+ 𝜌 𝑑𝑖𝑣(𝐮𝑛 ⊗ 𝐮𝑛) − 𝑑𝑖𝑣 𝝉𝑛 − 𝜌𝐠𝑛 = 0   (28) 

 

is discretized in space using the two-step Taylor-Galerkin algorithm: 

 

(𝑢𝑖)∗,𝑛+1/2 = (𝑢𝑖)𝑛 −
𝛥𝑡

2
(

𝜕(𝑢𝑗𝑢𝑖)𝑛

𝜕𝑥𝑗
− 𝑔𝑖

𝑛)                                   (29) 

𝑴𝛥𝑢𝑖
∗,𝑛 = 𝛥𝑡 {∫ [

𝜕𝑵𝑇

𝜕𝑥𝑗
(𝑢𝑗𝑢𝑖)∗,𝑛+1/2 −

1

𝜌

𝜕𝑵𝑇

𝜕𝑥𝑗
(𝜏𝑖𝑗)𝑛]

𝛺

𝑑𝛺 + 

+ ∫ 𝑵𝑇(𝑔𝑖)∗,𝑛+1/2
𝛺

𝑑𝛺 − ∫ 𝑵𝑇 ((𝑢𝑗𝑢𝑖)∗,𝑛+1/2 −
1

𝜌
(𝜏𝑖𝑗)𝑛)

𝛤
⋅ 𝑛𝑗𝑑𝛤}                    (30) 

 

where N is the shape function which interpolates the solution between the discrete values for 

velocity and pressure at the mesh nodes. 

 

Step II: Continuity equation discretization. Recalling the continuity equation at tn+1 given in 

(27) and using the incremental momentum split (26), discretization of the continuity equation 

can be written as  

 

𝑑𝑖𝑣 𝒖∗,𝑛 − 𝛥𝑡 𝑑𝑖𝑣 (
1

𝜌
𝑔𝑟𝑎𝑑 𝑝𝑛+1) = 0                                    (31) 

where 𝒖∗,𝑛 = 𝒖𝑛 + 𝛥𝒖∗,𝑛.  

 

Applying the standard Galerkin discretization, spatial discretization of above equation is  

 

∫
1

𝜌
 (𝑔𝑟𝑎𝑑 𝑵)𝑇𝑔𝑟𝑎𝑑 𝑵 𝑑𝛺

𝛺

 𝛥�̄�𝑛 = −
1

𝛥𝑡
∫ 𝑵𝑇𝑑𝑖𝑣 𝒖∗,𝑛 𝑑𝛺 −

𝛺

 

− ∫
1

𝜌
(𝑔𝑟𝑎𝑑 𝑵)𝑇𝑔𝑟𝑎𝑑 𝑝𝑛 𝑑𝛺

𝛺
+ ∫

1

𝜌𝛤−𝛤𝑝
𝑵𝑇𝑔𝑟𝑎𝑑 𝑝𝑛+1 ⋅ 𝒏 𝑑𝛤                             (32) 

 

where pressure is prescribed at p. 

 

In order to compute the boundary integral, equation (31) is projected along the normal direction, 

 
1

𝜌
𝑔𝑟𝑎𝑑 𝑝𝑛+1 ⋅ 𝒏 = −

1

𝛥𝑡
[𝒖𝑛+1 − (𝒖𝑛 + 𝛥𝒖∗,𝑛)] ⋅ 𝒏                              (33) 

 

resulting in  

 

∫
1

𝜌
𝑵𝑇𝑔𝑟𝑎𝑑 𝑝𝑛+1 ⋅ 𝒏𝑑𝛤 = −

1

𝛥𝑡
∫ 𝑵𝑇[𝒖𝑛+1 − (𝒖𝑛 + 𝛥𝒖∗,𝑛)] ⋅ 𝒏𝑑𝛤

𝛤−𝛤𝑝𝛤−𝛤𝑝
                 (34) 

 

Therefore, the system of equations to be solved to account for the pressure increment is 

 

∫
1

𝜌
(𝑔𝑟𝑎𝑑 𝑵)𝑇𝑔𝑟𝑎𝑑 𝑵 𝑑𝛺

𝛺

 𝛥�̄�𝑛 = −
1

𝛥𝑡
∫ 𝑵𝑇𝑑𝑖𝑣 𝒖∗,𝑛𝑑𝛺 −

𝛺

 

− ∫
1

𝜌
(𝑔𝑟𝑎𝑑 𝑵)𝑇𝑔𝑟𝑎𝑑 𝑝𝑛 𝑑𝛺

𝛺
+ ∫ 𝑵𝑇[𝒖𝑛+1 − (𝒖𝑛 + 𝛥𝒖∗,𝑛)] ⋅ 𝒏

𝛤−𝛤𝑝
𝑑𝛤                  (35) 
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Step III: Velocity correction. Once pressure has been computed in the previous step, the 

velocity increment, 𝛥𝒖∗, must be corrected by discretizing in space equation (26) 

 

∫
𝜌

𝛥𝑡
𝑵𝑇𝑵𝑑𝛺 𝛥𝒖∗∗,𝑛 + ∫ 𝑵𝑇𝑔𝑟𝑎𝑑 𝑝𝑛+1𝑑𝛺 = 0

𝛺𝛺
                                (36) 

 

Solving above system of equations 𝛥𝒖∗∗,𝑛 is obtained, which is added to 𝛥𝒖∗,𝑛, resulting in the 

total velocity increment 𝛥𝒖𝑛: 

 

𝛥𝒖𝑛 = 𝛥𝒖∗,𝑛 + 𝛥𝒖∗∗,𝑛                         (37) 

and thus, 

�̃�𝒏 = 𝒖𝑛 + 𝛥𝒖𝑛                  (38) 

 

The proposed algorithm can be extended to the 3-dimensional problem by just using linear 

tetrahedra elements. 

 

The maximum allowed time step in the solution of Navier-Stokes equations is [49]:  
 

𝐶 ≤ 𝛽√
1

𝑃𝑒2 + 𝛼 −
1

𝑃𝑒
      (39) 

where: 

 C is the Courant number: C=|u|/(he/Δt) 

 Pe is the Peclet number: Pe=|u|he/(2μ/ρ) 

 he is the element size (minimum height of each triangle has been considered here). 

 α =1 when using the lumped mass matrix and α =1/3 when using the consistent mass matrix in 

the solution of steps I and III. 

  is a safety coefficient, typically 0.85-0.9 

 

Thus, the global time step limit is calculated as the minimum time step allowed in the mesh. 

Equation (39) incorporates the effects of viscosity via Peclet number and, in order to account for 

non-linearities, a safety factor  is considered. 

3.2. Step 2: Calculating the rigid motion 

 

According to equation (10), calculation of the rigid motion ū, is obtained by averaging 

translation and angular velocities over the solid, S, where the density field is given by (8). 

 

Applying the Finite Element Method basic theory, the nodal velocity in the solid, �̅�𝒏, is 

computed as: 

�̅�𝒏 =
𝜌𝑠

𝑀
∑ [�̃�𝑒

𝑛]𝑒 𝛺𝑒 + [
𝜌𝑠

𝑰
∑ [(𝒙𝑒 − 𝒙𝐺) × �̃�𝑒

𝑛]𝛺𝑒𝑒 ] × (𝒙𝑖 − 𝒙𝐺)                 (40) 

 

where the sub-index e stands for “element” and G for gravity center of the element; M is the 

mass of the solid, e is the element volume (or surface), and I is the inertia matrix; �̃�𝒆 is the 

velocity computed in the previous step calculated at the element level and 𝜌𝑠 is the density of 

the solid. 

3.3. Step 3: Obtaining the final velocity  

 

In order to get the final velocity at tn+1, equation (12) is solved. Applying the standard Galerkin 

discretization: 

 

∫ 𝐍T𝜌𝑠𝐍 dΩ Δ𝐮𝑛 = λΔt ∫ 𝐍Tρ
𝑠
(�̅�𝑛 − 𝐮𝑛)𝐍 dΩ

ΩΩ
     (41) 
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and un+1 is obtained in the entire domain, such that 𝒖𝑛+1 = 𝒖𝑛 + 𝛥𝒖𝑛. 

 

As mentioned in Section 2.2, the time step restriction for the proposed explicit time 

discretization of (41) prevent from using values of  larger than 1/t [16,65-66]. This issue will 

be further discussed in Section 4.3.1. 

3.4. Step 4: Advecting the solid properties 

 

The objective of the indicator function is assigning fluid/solid properties at each point within the 

domain. The algorithm used for tracking the interface is based on (i) advection of the indicator 

function using the computed velocity field (17) and (ii) correction of the indicator function in 

order to keep it as distance function by obtaining the stationary solution of (21)-(22). 

 

Advection. Advection equation (17) is discretized using the two-step Taylor-Galerkin algorithm: 

 

𝜙𝑛+1/2 = 𝜙𝑛 −
𝛥𝑡

2
(�̄� 𝑔𝑟𝑎𝑑 𝜙𝑛) 

𝑴𝛥�̄�𝑛 = 𝛥𝑡{∫ (𝑔𝑟𝑎𝑑𝑇(�̄�𝑵))𝑇𝜙𝑛+1/2𝑑𝛺 − ∫ 𝑵𝑇�̄�𝜙𝑛+1/2𝒏𝑑𝛤
𝛤𝛺

}               (42) 

 

Correction. Once the indicator function has been advected, it is maintained as a distance 

function by obtaining the stationary solution of (21)-(22). Equation (22) is indeed an advection 

equation with velocity (23) and a source term, 𝒮(ϕ𝑛). 

 

Therefore, equation (22) may be written as 

 
𝜕ϕ(�̂�)

𝜕�̂�
+ 𝐯 𝑔𝑟𝑎𝑑ϕ(�̂�) = 𝒮(ϕ𝑛)                                        (43) 

 

and can be solved using the two-step Taylor-Galerkin algorithm:  

 

𝜙𝑛+1/2 = 𝜙𝑛 +
𝛥�̂�

2
[𝒮(𝜙𝑛) − 𝒗 𝑔𝑟𝑎𝑑 𝜙𝑛] 

𝑴𝛥�̄�𝑛 = 𝛥�̂� {∫ 𝑵𝒮(𝜙𝑛+
1

2)𝑑𝛺
𝛺

+ ∫ (𝑔𝑟𝑎𝑑𝑇(𝒗𝑵))𝑇𝜙𝑛+1/2𝑑𝛺 − ∫ 𝑵𝑇𝒗𝜙𝑛+1/2𝒏𝑑𝛤
𝛤𝛺

}       (44) 

 

Once the indicator function has been advected and corrected, the material properties, MP, are 

interpolated (15) using the sine function given in (19).  

 

In order to accelerate convergence of equation (43) to the steady state, the algorithm uses the 

lumped mass matrix along with an optimum time step for each mesh element [49]: 

𝛥�̂� = 𝛽
ℎ

|𝐯|
= 𝛽ℎ    (45) 

 

being  a safety coefficient lower than 1. 

 

Nevertheless, the correction phase implies a significative computational cost. In order to reduce 

this computational effort, both phases, advection and correction, are limited to a thin region 

about the zero level set of the indicator function. Following this procedure, the number of 

iterations is drastically reduced since condition |gradϕ| = 1 must be fulfilled only within this 

thin region. The size of the mentioned region is about 3δ - 4δ centred at the interface. 
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4. Verification results 

 

In this section, some numerical examples have been selected in order to validate the method 

since either they have been studied experimentally or they have already been solved using other 

numerical solutions.  

 

The examples considered next have been chosen in order to illustrate the main advantages of the 

proposed model: 

 

- The method is capable to reproduce the experimental results of the flow dynamics 

around a fixed body for a wide range of Reynolds numbers. 

- The model is able to track the fluid-solid interface without distortion for a very high 

number of iterations, maintaining the initial volume and shape of the solid. 

- The proposed model is able to predict the dynamics of an immersed body with a high 

level of accuracy. 

- The computational cost to get accurate results is very low. 

4.1 Flow around a circular cylinder 

This problem has been widely studied by many researchers in the past [72-84] giving rise to a 

variety of experimental results, empirical formulae and advanced numerical methods. Thus, 

detailed analysis of the flow around a cylinder is of high interest allowing validation of models 

against experimental and computational results, and becoming the starting point for further 

applications to the study of more complex geometries such as planes, ships or submarines. 

 

In order to assess the performance of the proposed model when dealing with the flow around a 

fixed rigid body, the classic problem of the flow around a circular cylinder placed on a uniform 

flow will be analysed here. This problem consists of a solid circular cylinder of diameter D = 1 

m and density ρs = 3000 kg/m3 fixed and immersed in a viscous fluid flow which is moving with 

uniform horizontal velocity, as sketched in Figure 2. 

 

 
Figure 2: Flow around a circular cylinder: problem layout and boundary conditions 
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A sensitivity analysis of the proposed method with respect to the mesh size and the time step is 

considered next in order to properly select the optimal mesh size and time step for the analysed 

problem. 

 

The theoretical inviscid pressure coefficient, 𝑐𝑝, on a circular cylinder is [81]: 

 

𝑐𝑝 =
𝑝−𝑝∞
1
2

𝜌𝑣∞
2 = 1 − 4𝑠𝑖𝑛2𝜃    (46) 

 

In order to analyse the mesh dependence on the solution, the inviscid pressure coefficient on the 

cylinder has been computed for different meshes. The number of mesh nodes has been gradually 

increased and the accuracy of the solution for different choices of the mesh size has been 

studied. The sensitivity analysis of the numerical solution as a function of the number of nodes 

is given in Figure 3. The values considered in this study are within the range of 1387–2432 

nodes. It can be observed in Figure 3 that for the case of 2432 nodes the solution preserves its 

accuracy, being in good agreement with the analytical solution before detachment of the flow 

occurs (120º <  < º). However, as the mesh size increases the solution loses its accuracy 

until it becomes highly distorted for a value of 1387 nodes. The time steps used for the 

calculations have been chosen according to (39) so that it is optimal for each considered case. 

 

 
 

Figure 3: Flow around a circular cylinder: sensitivity of the solution to the mesh size 

 

 

To accomplish a sensitivity analysis of the proposed method with respect to the time step, t, a 

similar analysis as above has been carried out. Therefore, the same problem of the inviscid 

pressure coefficient on the cylinder has been solved considering a fixed mesh of 2432 nodes. 

The value of parameter t has been gradually increased and the accuracy of the solution for 

different values of t has been studied. The sensitivity analysis of the numerical solution as a 

function of the time step, t, is given in Figure 4. It can be observed that when t is equal to its 

optimal value given by equation (39) (i.e. t = 3.3 10-2 s), the accuracy of the numerical solution 

gets maximal. As the value of the t is either increased or decreased with respect its optimal 

value the solution loses its accuracy. For larger values than t = 8 10-2 s the numerical solution 

becomes unstable. 
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Figure 4: Flow around a circular cylinder: sensitivity of the solution to the time step 

 

Along with the sensitivity analysis, an estimation of the computational cost has been performed. 

In order to do that, the calculation time for the cases presented in Figures 3 and 4 has been 

computed. The CPU time for 212 s of simulation using a 2.5 GHz CPU and 4Gb RAM machine 

are shown in Tables 2-4: for a fixed t (Table 2), for a fixed mesh (Table 3), and using the 

optimal time step given by equation (39) (Table 3). CPU times range between 13 s and 1000 s, 

while for an optimal mesh size and time step, the CPU time is around 131 s. These results show 

the efficiency and low computational cost of the proposed method. 

 

 

Fixed t (s) Elements Nodes Simulation time (s) CPU time (s) 

3.3e-2 4712 2432 212 130.70 
3.3e-2 3764 1958 212 103.18 
3.3e-2 3200 1676 212 90.25 
3.3e-2 2622 1387 212 71.98 

Table 2: Flow around a circular cylinder: CPU times for a fixed time step 

 

t (s) Fixed Elements Fixed Nodes Simulation time (s) CPU time (s) 

8e-2 4712 2432 212 39.89 
3.3e-2 4712 2432 212 130.70 
1e-2 4712 2432 212 379.07 
4e-3 4712 2432 212 1000.54 

Table 3: Flow around a circular cylinder: CPU times for a fixed mesh 

 

Optimal t (s) Elements Nodes Simulation time (s) CPU time (s) 

3.3e-2 4712 2432 212 130.70 
4.5e-2 3764 1958 212 80.98 
7e-2 3200 1676 212 46.99 
1e-1 2622 1387 212 13.11 
Table 4: Flow around a circular cylinder: CPU times for different mesh sizes using the optimal 

time step 
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Following the sensitivity analysis results, a non-structured mesh of 4712 linear triangles (2432 

nodes) is used for the computation (Figure 5). A horizontal uniform velocity is prescribed in the 

left boundary of the domain, vx = 1 m/s and vy = 0, while vy = 0 is prescribed in the top and 

bottom boundaries. Pressure is only prescribed in the right boundary and set equal 0 (see 

boundary conditions in Figure 2). 

 

 
Figure 5: Flow around a circular cylinder: computational mesh of 4712 linear triangles (2432 

nodes) 

 

 

The parameters used in the computation are taken as follows: length and height of the fluid 

domain are L = 25 m and H = 15 m respectively (Figure 2); the fluid is assumed to be of 

newtonian type with density ρf = 1000 kg/m3. The center of the cylinder is placed at a distance 

of 5 m from the left side of the domain and 7.5 m high (Figure 2). The solid velocity is set to 0 

throughout the whole simulation. The time-step used for the calculation is Δt = 5 10-2 s. 

 

In order to analyse the dynamics of the flow around the cylinder as a function of the Reynolds 

number, 𝑅𝑒 =
𝜌𝑣∞𝐷

𝜇
, different values of viscosity  will be used in the computations. 

 

For Re = 10: A non-oscillatory solution is reached. Behind the cylinder the boundary layer 

begins to be detached and two eddies start to be formed spinning in opposite directions; behind 

these two eddies the streamlines get close again parallel and symmetric. These results are the 

expected ones for Reynolds numbers in the range 1 < Re < 30 according to the literature [78-

79]. Figures 6 and 7 show the velocity vectors and pressure values in the whole domain for t = 

212 s.  
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Figure 6: Flow around a circular cylinder: velocity vectors in the whole domain  

for Re = 10 (t = 212 s) 

 

 

 
Figure 7: Flow around a circular cylinder: pressure values in the whole domain  

for Re = 10 (t = 212 s) 

 

For Re = 30: Behind the cylinder, slight periodic oscillations in the flow begin to be detected. 

These results are expected for Reynolds numbers within the range of 30 < Re < 90 according to 

[78-79]. Figures 8 and 9 show the velocity field and pressure values in the whole domain for t = 

212 s. In Figure 10 the detailed velocity field in the rear of the cylinder is depicted. 

 



Physics of Fluids 32 (12), 123311, 2020; https://doi.org/10.1063/5.0029242 

 

 16 

 
Figure 8: Flow around a circular cylinder: velocity vectors in the whole domain  

for Re = 30 (t = 212 s) 

 

 

 
Figure 9: Flow around a circular cylinder: pressure values in the whole domain  

for Re = 30 (t = 212 s) 
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Figure 10: Flow around a circular cylinder: velocity vectors in the rear of the cylinder  

for Re = 30 (t = 212 s) 

 

 

For Re = 90: Two eddies begin to be detached alternatively at both sides of the middle axis in 

the rear wake, being continuously regenerated with a period of 5.5 s. Figures 11 and 12 show 

the velocity field and pressure values in the whole domain for t = 212 s. 

 

 
Figure 11: Flow around a circular cylinder: velocity vectors in the whole domain  

for Re = 90 (t = 212 s) 

 



Physics of Fluids 32 (12), 123311, 2020; https://doi.org/10.1063/5.0029242 

 

 18 

 
Figure 12: Flow around a circular cylinder: pressure values in the whole domain  

for Re = 90 (t = 212 s) 

 

 

For Re = 103: The periodic detachment of the eddies at the rear wake continues with a period of 

5 s. Figures 13 and 14 depict the velocity field and pressure values in the whole domain for t = 

212 s. Separation of the rear wake is observed at about  = 80º (Figure 15) as observed 

experimentally [80,81]. 

 

 

 
Figure 13: Flow around a circular cylinder: velocity vectors in the whole domain  

for Re = 103 (t = 212 s) 
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Figure 14: Flow around a circular cylinder: pressure values in the whole domain  

for Re = 103 (t = 212 s) 

 

 

 

 
Figure 15: Flow around a circular cylinder: detailed velocity contours around the cylinder  

for Re = 103 (t = 212 s) 

 

 

For Re = 4 105: The periodic detachment of the eddies at the rear wake remains unchanged with 

a period of 5 s. Figures 16 and 17 depict the velocity vectors and pressure values in the whole 

domain for t = 212 s. Separation of the rear wake is observed at about  = 120º (Figure 18) as 

observed experimentally [80,81]. Comparison of Figures 15 and 18 clearly show how the wake 

width becomes narrower for Re = 4 105 [80,81]. 
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Figure 16: Flow around a circular cylinder: velocity vectors in the whole domain  

for Re = 4 105 (t = 212 s) 

 
Figure 17: Flow around a circular cylinder: pressure values in the whole domain  

for Re = 4 105 (t = 212 s) 

 

A characteristic feature of the vortex street generated at the rear of the cylinder is its geometric 

similarity. This feature of the vortex street suggests that there should be analytical relations 

between the Reynolds number (related to the lateral dimension of the obstacle, the flow velocity 

and the fluid viscosity) and parameters characterizing the flow, such as the Strouhal number, the 

drag coefficient and other parameters describing the vortex street [85]. Roshko [72-73] 

experimentally investigated laminar and turbulent wakes behind cylinders of different cross 

sections and observed geometric similarity among all vortex streets. From his data, he derived 

empirical features of vortex streets that are Reynolds-number independent, and he postulated a 

universal Strouhal number related to the wake width. In addition, the vortex-shedding process is 

slightly affected by other phenomena (e.g. oblique shedding modes, transition modes, Kelvin–

Helmholtz instability, boundary-layer effects at the obstacle) although the main characteristics 

of the vortex street are not strongly affected by them [85]. Thus, the complexity of the process 

has hindered the development of an analytical description of the problem and consequently, 

numerous models have been proposed during the last decades.  
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Figure 18: Flow around a circular cylinder: detailed velocity contours around the cylinder  

for Re = 4 105 (t = 212 s) 

 

 

In this numerical example the Strouhal number dependency on the Reynolds number, 𝑆𝑡 =
𝐷

𝑇 𝑣∞
= 𝑓(𝑅𝑒), has been analysed and compared with some empirical models [73,82,83]. The 

results depicted in Figure 19 show that the proposed numerical approach agrees well with the 

results found in the literature, especially for Reynolds numbers larger than 160 [73,82,83]. For 

Re < 160 the proposed model seems to overestimate the empirical models proposed by Roshko 

[73], Ponta and Aref [82] and V. Strouhal [83], however the agreement is reasonably good 

comparing with the experimental results given in [84]. 

 

These observed differences in the results are mainly due to the fact that to accurately capture the 

vortex structures either very fine meshes must be considered or a special treatment for 

turbulence must be incorporated in the numerical model [86-87]. Nevertheless, the numerical 

treatment of turbulence at different scales falls out of the scope of the present study. In addition 

to that, experimental analysis and theoretical modelling of the Reynolds number dependency as 

well as the development of coherent structures, are still subject to research nowadays. 

 

Finally, a numerical analysis of the pressure distribution on the cylinder and subsequent 

computation of the drag coefficient for an inviscid flow are carried out.  

 

Figure 20 shows the computed values of the pressure coefficient around the cylinder, 𝑐𝑝, for 

different values of the Reynolds number. These numerical values are compared with the 

theoretical pressure coefficient predicted by the inviscid theory (46). It is observed that as the 

Reynolds number increases the minimum of the numerical curves gets lower values. In the 

limit, for an inviscid fluid, the numerical result is almost coincident with the theoretical curve 

until detachment of the rear wake occurs (120º <  < 130º), which is not predicted by the 

inviscid theory. 

 

Once the pressure coefficient is known, the drag coefficient in the inviscid case may be 

calculated as [80,88]: 

 

𝑐𝐷 = ∫ 𝑐𝑝cos 𝜃  𝑑𝜃
𝜋

0
≈ 1.17    (47) 
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Figure 21 shows the drag coefficient evolution in time for the inviscid case. While the 

theoretical solution yields a constant value of the drag coefficient, the numerical solution is 

oscillatory, as observed experimentally for Re > 30 [78,79]. For the stabilized numerical 

solution (after 150 s), the mean value of the oscillating solution differs from the theoretical 

value with a relative error of 0.0010 (0.1%). 

 
Figure 19: Flow around a circular cylinder: Strouhal number dependency on the Reynolds 

number 

 
Figure 20: Flow around a circular cylinder: pressure coefficient on the cylinder for different 

values of the Reynolds number 
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Figure 21: Flow around a circular cylinder: drag coefficient for an inviscid flow 

 

4.2 Motion of a rigid square cylinder immersed in a rotational fluid flow 

 

One of the main challenges for the numerical modelling of a rigid body moving inside a viscous 

fluid is maintaining the volume and shape of the solid throughout its movement. As explained in 

Sections 2-3, the solution adopted in this work is the combination of the level set technique and 

the two-step Taylor-Galerkin algorithm for tracking the fluid-solid interface. The characteristics 

exhibited by the two-step Taylor-Galerkin, minimizing oscillations and numerical diffusion, 

make this method suitable to accurately advect the solid domain avoiding distortions at its 

boundaries. Illustrating this important feature of the proposed model is the aim of the numerical 

example presented herein. 

 

This problem consists of a solid square cylinder of D = 0.2 m immersed in a rotating viscous 

fluid whose initial velocity is vn = 0 (normal component) and vt = 5r m/s (tangential 

component), being r the distance to the center of the domain (see Figures 22 and 23). The 

boundary conditions are: vn = 0 along the four sides of the domain and p = 0 at the middle point 

of each side (Figure 22). 

 

A non-structured mesh of 11322 linear triangles (5728 nodes) is used for the computation 

(Figure 24). The parameters used in the computation are taken as follows: length and height of 

the fluid domain are L = 1 m and H = 1 m respectively (Figure 22); the fluid is assumed to be of 

newtonian type with viscosity  = 1 Pa s and density ρf = 1000 kg/m3. The center of the solid 

square cylinder is placed at the center point of the domain (0.5 m from the left side of the 

domain and 0.5 m high, as shown in Figure 22) and its density is ρs = 1000 kg/m3. Neither the 

solid position nor its velocity is restricted, thus both are left free to evolve throughout the 

simulation. The time-step used for the calculation is Δt = 2.83 10-4 s. 
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Figure 22: Rigid square cylinder immersed in a rotational fluid flow: problem layout and 

boundary conditions.  

  

 

 

 

 

 

 
Figure 23: Rigid square cylinder immersed in a rotational fluid flow: initial conditions for 

velocity in the whole domain (right) and detailed velocity vectors in the solid domain (left). 
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Figure 24: Rigid square cylinder immersed in a rotational fluid flow: computational mesh in the 

whole domain (top); detailed computational mesh inside the solid domain (bottom). 

 

 

Figure 25 shows the position of the fluid-solid interface for 8 different times during a total 

revolution of the solid about its center of mass. It can be observed that the shape and volume of 

the body are well preserved after a very high number of iterations (5 103 iterations). Even 
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though the rigid body is free to move inside the domain, the absence of instabilities allows the 

solid to spin about its center without either translating or distorting.  

 

 

 

 
Figure 25: Rigid square cylinder immersed in a rotational fluid flow: evolution of the fluid-solid 

interface during 0.4 s (5 103 iterations) 

 

 

According to the initial velocity field, vt = 5r m/s, the angular velocity is  = 5 rad s-1. Thus 

theoretically, in t = 0.4 s the solid must perform one complete rotation about its center of mass, 

which is in accordance with the obtained numerical result (see Figure 25). Velocity vectors and 

pressure distribution after one total rotation of the solid are shown in Figures 26, 27 and 28. The 

CPU time (2.5GHz-4Gb) for this simulation is 145 s. 

 

 

 
Figure 26: Rigid square cylinder immersed in a rotational fluid flow: velocity vectors  

for t = 0.25 s in the whole domain (right) and inside the solid domain (left). 
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Figure 27: Rigid square cylinder immersed in a rotational fluid flow: velocity vectors  

for t = 0.4 s in the whole domain (right) and inside the solid domain (left). 

 
Figure 28: Rigid square cylinder immersed in a rotational fluid flow: pressure distribution  

for t = 0.4 s 

 

4.3 Particle settling in a viscous fluid 

Finally, to assess the dynamical behaviour of a submerged body inside a viscous flow, the 

gravity-driven motion of a cylinder in a viscous fluid is considered. The aim of this example is 

to validate the performance of the model under dynamic conditions, in a case in which 

experimental and numerical solutions are available. 
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4.3.1. Settling of a circular cylinder with ρs > ρf 

 

The layout of the problem is sketched in Figure 29. A solid circular cylinder of diameter D = 

0.05 m and density ρs = 7800 kg/m3 is immersed in a viscous fluid of newtonian type with 

viscosity  = 8 Pa s and density ρf = 1200 kg/m3 and subject to gravity g = 9.8 m/s2. The length 

and height of the fluid domain are given by L = 1.4 m and H = 2.43 m respectively. The center 

of the cylinder is placed at 0.7 m from the left side of the domain and 1.62 m high. No 

movement restrictions are imposed to the solid. No-slip boundary conditions are assumed along 

the four boundaries and pressure is prescribed as p = 0 in the top corners of the domain. Initial 

conditions for velocity are vx = vy = 0 in the whole domain, while hydrostatic initial conditions 

for pressure are considered. 

 

A non-structured mesh of 9950 linear triangles (5073 nodes) is used for the computation (Figure 

30). The size of mesh elements in the finest area (solid domain) is hmin = 0.008 m while hmax = 

0.05 m in the coarsest part of it. The time-step used for the computation is Δt = 1.08 10-4 s. 

 

The proposed model allows the computation of the velocity field and pressure distribution in the 

domain induced by the rigid body motion. As shown in Figure 31 for t = 1.26 s no oscillations 

or instabilities are present even in the area surrounding the cylinder. Figure 32 shows the 

vertical velocity distribution along a diametric horizontal line across the domain once the 

terminal velocity is achieved. 

 
Figure 29: Settling of a circular cylinder: problem layout and initial conditions for velocity and 

pressure. 
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Figure 30: Settling of a circular cylinder: Computational mesh in the whole domain (left) and 

detailed mesh inside the solid domain (right). 

  

 
Figure 31: Settling of a circular cylinder with ρs > ρf: velocity distribution for t = 1.26 s 
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Figure 32: Settling of a circular cylinder with ρs > ρf: vertical velocity distribution along a 

diametric horizontal line across the domain for t = 1.26 s 

 

Since no movement restrictions are imposed to the cylinder, the rigid body is free to move in all 

directions. Evolution of the solid center of mass is plotted in Figure 33. The rigid body follows a 

vertical path whose deviation from the vertical line is of the order of the minimum mesh 

element size, he (relative error of r = 0.0249). The terminal settling velocity can be derived from 

Figure 34. For the time interval between t = 0.3 s and t = 1.3 s the vertical velocity curve can be 

approximated by a linear function with a correlation factor R2 = 1. The slope of the linear 

function is the value of the terminal velocity, vterminal = 1.079 m/s 

 

 
Figure 33: Settling of a circular cylinder with ρs > ρf: path followed by the solid center of mass 
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Figure 34: Settling of a circular cylinder with ρs > ρf: evolution in time of the y-coordinate of the 

solid center of mass and linear regression. 

 

 

Some experimental correlations have been proposed by several authors in order to establish the 

relationship between CD and Re [81,89]. For 4 < Re < 10, the following expression can be 

considered: 

 

CD = 6.8052 Re-0.3755          (48) 

 

For the computed settling velocity, vterminal = 1.079 m/s the Reynolds number is Re = 8.09 and 

therefore, according to (48) the resulting value of the drag coefficient is CD = 3.103. 

 

This problem has been previously analysed experimentally and numerically by [89] and the 

experimental-based values for the terminal settling velocity and the drag coefficient are vterminal = 

1.067 m/s and CD = 3.12 respectively, which confirms the good performance of the numerical 

model proposed herein. 

 

In order to quantify the deformation of the solid and, therefore, the error of the model, the 

strain-rate tensor, D(u), in the L2-norm is computed for 𝐱 ∈ S(𝑡) [90,91] 

 

||𝐃(𝐮)||2
𝐿2

= ∑ (𝐷11
2 + 2𝐷12

2 +𝐷22
2 )ℎ𝑒

2
𝑆(𝑡)    (49) 

 

being 𝐷𝑖𝑗 =
1

2
(

𝜕𝑢𝑖

𝜕𝑥𝑗
+

𝜕𝑢𝑗

𝜕𝑥𝑖
) the components of the symmetric tensor D(u), and he the element 

size. 

 

To test the sensitivity of the proposed method with respect to the penalty parameter, the 

dependency of the rate of deformation tensor, D(u), in the L2-norm for 𝐱 ∈ S(𝑡) on the penalty 

parameter, , is analysed. This test will allow quantification of the model error as a function of 

the penalty parameter, . 

 

Table 5 summarizes the results for this case study. As previously shown in [64-66], there exists 

an intimate coupling between  and t: the error saturates around  ≈ 1/t. This behaviour can 

be understood by the interpretation of the penalty term as a strong damping term on the velocity, 

introducing a characteristic time scale, which is of order 1/. Attending the interpretation of 1/ 

as a physical permeability an apparent good option would be choosing a very high value for  
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>> 1/t. Unfortunately, the time step restriction for the proposed explicit scheme prevents from 

doing so, and therefore, the only possible way for using  >> 1/t would be treating the 

penalization term with an implicit time discretization scheme [16,66]. The results presented in 

Table 5 illustrate this fact and justify the use of 1/ ≈ t in the present work, including this 

particular example for which  =  9.2 103 and t = 1.08 10-4 s. In Table 5 are also displayed the 

computational times for all tested cases, ranging from 313 s to 1830 s. For the case study 

presented in this section, the rate of deformation tensor, D(u), in the L2-norm is 6.88 10-3 and 

the CPU time (2.5GHz-4Gb) is about 387.48 s, showing the balance between accuracy and low 

computational cost of the proposed model. 

 

 t ||D(u)||L2 Simulation time (s) CPU time (s) 

1.0e5 1.97e-5 6.56e-3 3 1829.91 
1.0e4 1.23e-4 7.32e-3 3 363.02 
9.2e3 1.08e-4 6.88e-3 3 387.48 
5.8e3 1.38e-4 5.57e-3 3 324.75 
4.2e3 1.19e-4 2.09e-3 3 362.11 
2.4e3 1.04e-4 2.21e-2 3 420.17 
1.0e3 1.20e-4 2.79e-2 3 354.13 
8.3e2 1.20e-4 6.66e-2 3 352.90 
8.0e1 1.25e-4 0.49 3 325.98 
8.0e0 3.80e-4 1.14 3 312.87 

     
Table 5: Settling of a circular cylinder with ρs > ρf: sensitivity analysis with respect to the penalty 

parameter. 

4.3.2. Settling of a circular cylinder with ρs < ρf 

 

In order to test the performance of the model for a rigid body lighter than the fluid, a solid 

circular cylinder of diameter D = 0.05 m and density ρs = 500 kg/m3 subject to gravity g = 9.8 

m/s2 is considered. The problem geometry and initial and boundary conditions are the same as 

in the previous case (Figures 29-30). The fluid properties considered are: viscosity  = 4 Pa s 

and density ρf = 1200 kg/m3. Same non-structured mesh of 9950 linear triangles (5073 nodes) is 

used for the computation (Figure 30). The time-step used in the calculation is Δt = 1.69 10-4 s. 

 

Velocity field in the domain induced by the rigid body motion is depicted in Figure 35 for t = 

0.55 s. Again, no oscillations or instabilities are observed. Figure 36 shows the vertical velocity 

distribution along a diametric horizontal line across the domain once the terminal velocity is 

achieved.  

 

The rigid body is free to move in all directions, since no movement restrictions are imposed. 

Evolution of the solid center of mass is plotted in Figure 37. The rigid body follows a vertical 

path whose deviation from the vertical line is of the order of the mesh size, he (relative error of 

r = 0.0236). The terminal ascending velocity can be derived from Figure 38. For the time 

interval between t = 0.53 s and t = 1.70 s the vertical velocity curve can be approximated by a 

linear function with a correlation factor R2 = 0.9999. The slope of the linear function is used to 

get the value of the terminal velocity, vterminal = 0.3936 m/s. 

 

For t = 0.55 s, the calculated error given by (49) is ||𝐃(𝐮)||𝐿2= 3.34 10-3 and the CPU time 

(2.5MHz-4Gb) for the simulation is 247.20 s. 
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Figure 35: Settling of a circular cylinder with ρs < ρf: velocity field for t = 0.55 s 

 

 

 

 

 

 
Figure 36: Settling of a circular cylinder with ρs < ρf: vertical velocity distribution along a 

diametric horizontal line across the domain for t = 0.55 s 



Physics of Fluids 32 (12), 123311, 2020; https://doi.org/10.1063/5.0029242 

 

 34 

 
Figure 37: Settling of a circular cylinder with ρs < ρf: path followed by the solid center of mass 

 

 
Figure 38: Settling of a circular cylinder with ρs < ρf: evolution in time of the y-coordinate of the 

solid center of mass and linear regression. 

4.3.3. Settling of a circular cylinder with ρs = ρf 

 

Finally, in order to assess the stability of the model, the same problem is solved for a solid 

cylinder whose density is ρs = ρf = 1200 kg/m3. The problem geometry and initial and boundary 

conditions are the same as in the previous cases (Figures 29-30). The fluid viscosity  = 4 Pa s 

and gravity g = 9.8 m/s2. Same non-structured mesh of Figure 30 is used for the computation. 

The time-step used for the calculation is Δt = 10-3 s. 

 

No movement restrictions are imposed to the rigid body, and thus it is free to move in all 

directions. Figure 39 depicts the path followed by the solid center of mass during 3 s (3000 

iterations). Figure 40 shows the evolution of its y-coordinate in time. The solid does not either 

move or distort during the computation, which is a consequence of the absence of numerical 

instabilities in both velocity and pressure. 

 

After 3 s of simulation and 3 103 iterations, the calculated error given by (49) is ||𝐃(𝐮)||𝐿2= 

3.19 10-12 and the CPU time (2.5GHz-4Gb) for the simulation is 45.75 s. 
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Figure 39: Settling of a circular cylinder with ρs = ρf: path followed by the solid center of mass 

 

 
Figure 40: Settling of a circular cylinder with ρs = ρf: evolution in time of the y-coordinate of the 

solid center of mass. 

5. Conclusions  

 

A new model for the numerical simulation of a rigid body moving in a viscous fluid flow using 

FEM has been presented. The model is based on Patankar’s projection method [15] combined 

with the level set algorithm for the tracking of the fluid-solid interface [16,57-61]. The Navier-

Stokes equations for a newtonian incompressible fluid are solved using a fractional-step 

procedure [44,45]. To avoid distortion of the fluid-solid interface the two-step Taylor-Galerkin 

algorithm is proposed for the solution of the level set advection and correction equations [45-

56]. 

 

A sensitivity analysis of the method, with respect to mesh size, time step and penalty parameter, 

has been accomplished, showing the accuracy and efficiency of the method. The distortion of 

the solid boundary has been quantified, proving that the proposed model preserves the volume 

and shape of the solid, avoiding numerical deformation of the rigid body. Computation times 

have been analysed, showing the low computational cost required by the method. 

 

With the validation examples presented in this paper it has been proved that with a reduced 

number of nodes and at a very low computational cost, the model is able to capture, with a 
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reasonable accuracy, the main features of the flow (i.e. vortex shedding street formation, rear 

wake detachment angle, dependency of the Strouhal number on the Reynolds number…). The 

model allows proper calculation of the drag coefficient and it accurately reproduces the 

dynamics of a solid moving inside a viscous fluid, conserving its volume and shape. 

 

In all tested cases, the numerical results have shown to be in good agreement with other 

empirical solutions, experimental data and numerical simulations found in the literature [73-

84,89], showing the potential of the proposed model as a valuable tool for the numerical 

analysis of the fluid-solid interaction. 
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