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ABSTRACT:  41 

Wind extremes cause many environmental and natural hazard related problems globally, 42 

particularly in heavily populated metropolitan areas. However, the underlying causes of 43 

maximum wind speed variability in urbanized regions remain largely unknown. Here, we 44 

investigated how rapid urbanization in the Yangtze River Delta (YRD), China, impacted daily 45 

maximum wind speed (DMWS) between 1990-2015, based on near-surface (10 m height) 46 

DMWS observations, reanalysis datasets, and night-time lighting data (a proxy for 47 

urbanization). The station observation shows that annual DMWS in the YRD significantly (p < 48 

0.05) declined during 1990-2015, by -0.209 m s-1 decade-1, while slightly (p > 0.1) positive 49 

trends were found in NCEP-NCAR1 (+0.048 m s-1 decade-1) and ERA5 (+0.027 m s-1 decade-
50 

1). An increasing divergence between the reanalysis output and the station observation since 51 

2005 was found, and those stations located in areas with high rates of urbanization show the 52 

strongest negative annual DMWS trend, implying the key role of urbanization in weakening 53 

DMWS. This finding is supported by sensitivity experiments conducted using a regional 54 

climate model (RegCM4) forced with both 1990 and 2015 land-use and land-cover (LULC) 55 

data, where the simulated DMWS using the 2015 LULC data was lower than that simulated 56 

using the 1990 LULC data. 57 

Keywords: daily maximum wind speed, trend, urbanization, regional climate model, Yangtze 58 

River Delta. 59 
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1. Introduction  60 

Wind speed is an important factor for many environmental issues. For examples, it can 61 

influence air quality in megacities through local ventilation and long-distance transportation of 62 

air pollutants (Cai et al., 2017; Shi et al., 2019), and it supplies kinetic energy for removing the 63 

fine and nutrient-rich topsoil, thereby causing severe soil erosion (Chappell et al., 2016; Zhang 64 

et al., 2019) and dust storms (Wang et al., 2017) across the globe in arid regions. Wind energy 65 

production is strongly dependent on wind speed variability (Karnauskas et al., 2018; Zeng et 66 

al., 2019), as the wind power generation potential varies as the cube of the instantaneous wind 67 

speed (Zeng et al., 2019). Strong winds and their associated turbulent eddies can heavily 68 

damage infrastructure, buildings (Neumayer et al., 2014) and crops (Gardiner et al., 2016), thus 69 

inflicting considerable socioeconomic losses each year (Vautard et al., 2019). For example, 70 

storms associated with extreme winds were identified as the costliest among the various types 71 

of climate-related and geophysical disasters in 2019, being estimated to have caused about 58 72 

billion US dollars of direct losses (47.5% of the global natural disaster-induced losses) and 73 

more than 2,500 deaths worldwide (2019 Global Natural Disaster Assessment Report, 2020).  74 

 75 

Global terrestrial mean wind speed has declined since the 1960s, termed stilling (Roderick 76 

et al., 2007; ,McVicar et al., 2012). This slowdown has been most evident in boreal mid-latitude 77 

countries, including China (Lin et al., 2013), the United States (Pryor et al., 2009) and European 78 

counties (Azorin-Molina et al., 2014; Minola et al., 2016). From ~2010 onward, a reversal of 79 

the mean wind speed trend has attracted the attention of the climate community (Zeng et al., 80 

2019; ,Azorin-Molina et al., 2019). Debate continues in scientific circles regarding the 81 



occurrence of wind speed changes (stilling vs. reversal), because their underlying causes are 82 

not fully understood (Wu et al., 2018).  83 

While air temperature and precipitation extreme changes have been extensively investigated, 84 

studies of extreme wind speed changes, e.g., daily maximum wind speed (DMWS, defined as 85 

observed daily maximum 10 minutes average wind speed), an important index for designing 86 

building safety, has received limited attention during the last two decades (Azorin-Molina et 87 

al., 2016; ,Zhang et al., 2020). Given the uncertainty of causes in mean wind speed changes 88 

(Wu et al., 2018) and a skewed relationship between mean wind speed and maximum wind 89 

speed (Minola et al., 2020), the trends in DMWS and in the mean wind may not be consistent. 90 

International multi-decadal research into extreme wind variability, as well as changes from 91 

anemometer observations, remain inconclusive: both negative and positive trends have been 92 

reported in different regions (Azorin-Molina et al., 2016). For instance, DMWS significantly 93 

declined from 1975 to 2016 in China (Zhang et al., 2020), as supported by a range of different 94 

evidences including declining global dust emissions (Chappell et al., 2016; ,Shao et al., 2013). 95 

In contrast, DMWS has increased at most of coastal stations in the USA since 1990 (Klink, 96 

2015). 97 

 98 

To date, few studies have investigated the causes of extreme wind speed variability and trends 99 

(Wu et al., 2018). For example, large-scale atmospheric changes expressed by the North 100 

Atlantic Oscillation Index and the Jenkinson and Collison scheme indices showed significant 101 

correlation with both frequency and magnitude of daily peak wind gust changes over Spain and 102 

Portugal (Azorin-Molina et al., 2016). Overall weakened large-scale atmospheric circulation 103 



partly explained the declining annual, winter and autumn DMWS over China, while the causes 104 

of increased DMWS in summer and spring are still largely unknown (Zhang et al., 2020). In 105 

addition, near-surface wind speed is sensitive to aerodynamic roughness changes according to 106 

the wind profile law (Han et al., 2016), and many previous studies have confirmed that changes 107 

in surface roughness induced by vegetation growth (Vautard et al., 2010; Wever, 2012) or 108 

urbanization (Hou et al., 2013) have played a key role in reducing near-surface mean wind 109 

speed. For example, in South Korea during 1993-2015, urban near-surface mean wind speeds 110 

observations declined up to -0.63 m s-1 decade-1, while those at rural stations increased up to 111 

0.41 m s-1 decade-1. Rapid urbanization contributed −0.37 m s-1 of mean wind speed changes 112 

from 1980-2018 over Beijing-Tianjin-Hebei in China (Wang et al., 2020). However, no existing 113 

studies have examined the contribution of changed surface roughness to extreme wind speed. 114 

The present study addresses this knowledge gap. 115 

 116 

China has experienced rapid urbanization in the last 3-4 decades, with vigorous economic 117 

growth (Bai et al., 2014), especially in the Yangtze River Delta (YRD, including Zhejiang, 118 

Jiangsu and Shanghai) which accounted for more than 20% of China’s GDP (Gross Domestic 119 

Product) in 2019 (Statistical Bulletin on National Economic and Social Development in 2019, 120 

http://www.stats.gov.cn/tjsj/zxfb/202002/t20200228_1728913.html, last accessed 1 February 121 

2022). Previous studies documented that rapid urbanization both in terms of areal extension 122 

and constructing more taller buildings has weakened near-surface mean wind speed in some 123 

rapidly urbanized areas, e. g., east China (Li et al., 2018) and Beijing (Hou et al., 2013). By 124 

increasing roughness, urbanization could weaken the long-term trend of near-surface DMWS 125 

http://www.stats.gov.cn/tjsj/zxfb/202002/t20200228_1728913.html


(Zhang et al., 2020), yet in contrast, uniform building distributions can induce wind funneling 126 

effects (Peng et al., 2018) that can enhance DMWS in some local urban areas: these contrasting 127 

responses illustrate the uncertainty regarding the effects of urbanization on DMWS changes.  128 

 129 

For these reasons, our objectives are to (i) investigate DMWS trends in the rapidly urbanized 130 

YRD from 1990 to 2015, using quality-controlled and homogenized DMWS observations and 131 

reanalysis output; (ii) reveal the potential impacts of the rate of urbanization on DMWS trends, 132 

by using night-time lighting data to classify the rate of urbanization at each station; and (iii) 133 

simulate how urbanization affects DMWS by conducting sensitivity experiments using a 134 

regional climate model. Our research supports the management of social and environmental 135 

planning and policy development of urbanization, and contributes to the scientific 136 

understanding of long-term variability in wind extremes. 137 

2. Materials and methods 138 

2.1. Anemometer observations and reanalysis outputs  139 

We used daily maximum 10-minute mean near-surface (~10 m height) wind speed for 140 

00:00 to 23:59 from the China Meteorological Administration (CMA, http://data.cma.cn/, last 141 

accessed 1February 2022). Following Azorin-Molina et al.( 2014), the daily maximum wind 142 

speed (DMWS) data were firstly aggregated into monthly values, allowing a maximum of five 143 

days of missing data each month. Stations with a large amount of missing data (i.e., greater than 144 

3 months since 1 January 1990) were excluded. Figure 1 displays the distribution of the 111 145 

stations selected for the 26-year (i.e., 1990–2015) study period.  146 

Anemometer height and type changes (Wan et al., 2010), and anemometer aging (Azorin-147 
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Molina et al., 2018), can cause artificial shifts in wind speed series. As has been successfully 148 

applied previously to DMWS series (Azorin-Molina et al., 2016; ,Zhang et al., 2020), the R 149 

package Climatol (http://www.climatol.eu/; last accessed 1February 2022) was used to perform 150 

quality control, relative homogenization, and missing data infilling on the raw DMWS series. 151 

A detailed description of Climatol is found in Guijarro ( 2018). 152 

For comparison with station observations, 6-hourly and hourly 10-m zonal and meridional 153 

components of wind from two widely used and reliable reanalyses (Zhang et al., 2021; Torralba 154 

et al., 2017) of , i.e., the National Center for Environmental Prediction, National Center for 155 

Atmospheric Research (NCEP–NCAR1 Reanalysis, Kalnay et al., 1996), 156 

https://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis.pressure.html; last accessed 157 

1February 2022), and the European Centre For Medium Range Weather Forecasts (ERA5 158 

Reanalysis, Hersbach et al., 2020), https://cds.climate.copernicus.eu/; last accessed 1 February 159 

2022) were downloaded, both covering 1990-2015. Note that DMWS from NCEP-NCAR1 and 160 

ERA5 were calculated as maximum 6-hourly wind speed and hourly wind speed for a day, 161 

respectively; this differs from the maximum 10-minute average which is denoted as daily 162 

maximum wind speed from observations. 163 

2.2. Remote sensing data  164 

2.2.1 Night-time light data 165 

Night-time light data are widely used to indicate the distribution of urban areas and 166 

urbanization growth (Stokes and Seto, 2019;  Zhao et al., 2020). We retrieved night-time light 167 

data that from the National Centers for Environmental Information (NCEI, 168 

https://www.ngdc.noaa.gov/eog/download.html, last accessed on 1 February 2022). The dataset 169 

http://www.climatol.eu/
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included two types of satellite observations. Operational Linescan System of the Defense 170 

Meteorological Satellite Program (DMSP/OLS) observed night-time light from Jan 1992-Dec 171 

2013, with a spatial resolution of 0.008333° (~0.92 km at the equator), and Visible Infrared 172 

Imaging Radiometer Suite (VIIRS) observed night-time light from Jan 2012 onwards, with a 173 

spatial resolution of 0.004167° (~0.46 km at the equator). We used the monthly DMSP/OLS 174 

composites product averaged over 1992 to represent the 1990 level of urbanization, and the 175 

annual average of the 2015 monthly VIIRS product to represent the 2015 urbanization. Both 176 

products were selected with a stable light value, which discarded other sites with persistent 177 

lighting, including gas flares and ephemeral events, such as fires. Due to sensor differences 178 

between DMSP/OLS and VIIRS, calibration coefficients were applied to the VIIRS data (Yang, 179 

2018) to harmonize the two products. We used the night-time light value (0-64, dimensionless) 180 

to represent the urbanization level, and the mean night-time lights within a 3 km radius for each 181 

station (Li et al., 2018). Then, the difference in night-time light between 1992 and 2015 was 182 

used as a proxy for urbanization changes within the 3 km proximity of each station.  183 

2.2.2 Land-use and land-cover (LULC) data 184 

   The land-use and land-cover (LULC) data over the YRD in 1990 (1990LULC) and 2015  185 

(2015LULC) were downloaded from the Resource and Environmental Science Data Center of 186 

the Chinese Academy of Sciences (RESDC-CAS, 187 

http://www.resdc.cn/Datalist1.aspx?FieldTyepID=1,3; last accessed 1 February 2022), with a 1 188 

km resolution. As the regional climate model applied herein (see 2.3) used a different LULC 189 

classification, following Ren et al. (2018), we transferred the RESDC-CAS LULC to a format 190 

that was used by the model. 191 

http://www.resdc.cn/Datalist1.aspx?FieldTyepID=1,3


 192 

2.2.3 Normalized Difference Vegetation Index (NDVI) dataThe Normalized Difference 193 

Vegetation Index (NDVI, dimensionless) data over the YRD in 1990 is provided by National 194 

Cryosphere Desert Data Center. (NCDDC, http://www.ncdc.ac.cn; last accessed 1 February 195 

2022), with an 8 km resolution. The NDVI data in 2015 is downloaded from the Resource and 196 

Environmental Science Data Center of the Chinese Academy of Sciences (RESDC-CAS, 197 

https://www.resdc.cn/Datalist1.aspx?FieldTyepID=1,3; last accessed 1 February 2022), with an 198 

1 km resolution. To be congruent with the resolution of the NDVI in 2015, NDVI in 1990 is 199 

resampled to a 1 km resolution. 200 

2.2.4 Estimation of aerodynamic roughness 201 

Following Chappell et al. (2018), we estimated monthly albedo-derived aerodynamic roughness for 202 

each station over the YRD from 2000-2015. The albedo data were retrieved from the MODIS albedo 203 

product (https://modis.gsfc.nasa.gov/, last accessed 1February 2022), which provides 500 m 204 

resolution data available every 8 days, with 16 days of acquisition, since 2000. 205 

 206 

2.3 Regional climate model and sensitivity experiment design  207 

The Abdus Salam International Center for Theoretical Physics (ICTP) RegCM4 model 208 

(https://www.ictp.it/research/esp/models/regcm4.aspx; last accessed 1February 2022) was 209 

applied to conduct sensitivity experiments. The model uses a terrain-following σ-pressure 210 

vertical coordinate and an Arakawa B horizontal grid system and includes a convection 211 

parameterization scheme, a large-scale cloud and precipitation scheme, expansion and 212 

modification of the radiation scheme, and advanced land-surface model within the mesoscale 213 

http://www.ncdc.ac.cn/
https://modis.gsfc.nasa.gov/
https://www.ictp.it/research/esp/models/regcm4.aspx


model MM5 (Giorgi et al., 2012). The RegCM4 model simulations cover the YRD (Fig. S1), 214 

with a horizontal resolution of 30 km. The vertical grid includes 23 levels from the surface to 215 

50 hPa, and the time step is 30 seconds. The primary physical process schemes contain the 216 

MIT–Emanuel cumulus convection scheme for cumulus parameterization (Georg, 1993), 217 

Holtslag planetary boundary layer (PBL) scheme (Holtslag et al., 1990), the Zeng scheme for 218 

sea flux parameterization (Zeng et al., 1998), Community Land Model version 4.5 (CLM4.5) 219 

for land-surface parameterization scheme (Oleson et al., 2013), the NCAR CCM3 radiation 220 

scheme (Kiehl et al., 1996), and the Rapid Radiation Transfer Model (RRTM) (Mlawer et al., 221 

1997). ERA-Interim reanalysis data (0.75° × 0.75°, 222 

https://apps.ecmwf.int/datasets/data/interim-full-daily/levtype=pl/, last accessed 1 February 223 

2022) were used as the lateral boundary condition, which is updated every 6 hours; the sea 224 

surface temperature (SST) data were from  the optimal interpolation weekly SST data from 225 

NOAA (Reynolds et al., 2002). Full details of the model experiments are found in Wang et al. 226 

(2021). 227 

To explore possible responses of DMWS changes to the rapid urbanization, using the same 228 

meteorological forcings from 1 October 1989 to 31 December 1990, two sensitivity 229 

experiments were performed in RegCM4 using (i) 1990LULC; and (ii) 2015LULC respectively, 230 

after a one-year’ initialization This method has been successfully implemented previously to 231 

assess the impact of LULC on wind speed dynamics (e.g., Zha et al., 2019), and air temperature 232 

and precipitation changes (e.g., Cao et al., 2015). A full year simulation for a low and high 233 

urbanization cases is considered appropriate to identify the impact of urbanization on wind 234 

climate between the two years (i.e., 1990 and 2015); noting that our research purpose was not 235 



to simulate realistic changes of the wind climate under changing urbanization for each of the 236 

26-years. In the analysis, the first three months of each experiment were excluded for model 237 

spin-up. DMWS in the model output was taken as the maximum hourly wind speed for each 238 

24-hour period (defined as UTC 00:00 to 24:00).  239 

 240 

2.4 Statistical analyses 241 

To avoid a few series with high-wind speed dominating a regional average series, DMWS 242 

anomalies were expressed as the deviation from the 1990-2015 DMWS mean for each station 243 

(Azorin-Molina et al., 2021). Following previous studies (Chen et al., 2013; Zhang et al., 2020), 244 

regional mean DMWS in the YRD from the NCEP-NCAAR1 and ERA5 were calculated as the 245 

mean value of all grids with a majority of area covered by the study site . Sen’s slope method 246 

was used to calculate the magnitude of DMWS trends (in m s-1 decade-1), and an 11-yr Gaussian 247 

low-pass filter was used to obtain the DMWS multi-decadal variability. To enable the 248 

comparison with reanalysis data, DMWS from station observations were interpolated onto a 249 

0.5° resolution grid. Additionally, we computed the statistical significance of the estimated 250 

linear trends using the Mann–Kendall’s tau-b nonparametric correlation coefficient. 251 

We also assessed DMWS changes as a function of urbanization rate across the study region. 252 

Considering the complex and non-uniform urban morphology (Peng et al., 2018) and that winds 253 

are sensitive to urbanization induced surface roughness (Li et al., 2018), homogenized data 254 

from the 111 stations were classified into 5 groups with different urbanization rates (Table 1) 255 

being: (i) very-low urbanization rate; (ii) low urbanization rate; (iii) moderate urbanization rate; 256 

(iv) fast urbanization rate; and (v) very fast urbanization rate. Here the urbanization rates of 257 



each station for 1990 to 2015 were calculated as the difference in night-time light value as 2015 258 

minus 1992 (see Table 1). 259 

 260 

3 Results  261 

3.1. DMWS changes estimated from the station observations and reanalyses  262 

Figure 2 shows trends in DMWS anomalies for 1990-2015 over the YRD. Annual DMWS 263 

observations significantly declined for the whole period (-0.209 m s-1 dec-1, p < 0.05), with the 264 

highest DMWS (actual values: 8.7 m s-1) in 1990 and the lowest DMWS (actual values: 7.8 m 265 

s-1) in 2015. DMWS displayed relatively stable interannual variability during 1990-2005, before 266 

a dramatic and rapidly weakening trend from 2005 till 2015. However, DMWS from NCEP-267 

NCAR1 shows an insignificant positive trend (+0.048 m s-1 dec-1, p > 0.1) for 1990-2015. A 268 

close relationship between the observed DMWS and NCEP-NCAR1 DMWS was detected from 269 

1990-2005, while the two series diverged from 2005 onwards. Similar variability and a positive 270 

trend (+0.027 m s-1 dec-1, p > 0.1) were found in ERA5 DMWS. The conflicts between observed 271 

DMWS and reanalyses indicate the uncertainty of reanalyses on modeling DMWS, as 272 

reanalyses have not assimilated roughness changes induced by urbanization (Zhang et al., 2020). 273 

Increasing divergence between the reanalyses and the station observation started in 2005, 274 

indicating urbanization might have a significant impact on DMWS changes after reaching a 275 

certain threshold.  276 

 277 

Figure 3 displays the spatial distribution of DMWS trends across the YRD for 1990-2015. 278 

Observed DMWS declined across most of the study region, with the three sub-regions showing 279 



the strongest and most significant negative trends (<-0.200 m s-1 dec-1, p < 0.05) located in the 280 

north, east and coastal zones of the southeastern parts of the study region. Stations that 281 

displayed low-magnitude negative trends (-0.100 to 0.000 m s-1 dec-1, p > 0.05) are located in 282 

the southwestern part of the study region, where complex topography is characterized by hills 283 

and mountains (Fig. 1). However, barely significant and different spatial patterns of DMWS 284 

trends were found in the NCEP-NCAR reanalysis: in this case, DMWS weakly increased 285 

(+0.000 to +0.100 m s-1 dec-1, p > 0.05) in most of the YRD, and weakly declined (-0.000 to -286 

0.200 m s-1 dec-1, p < 0.05) in the northern and southern corners. Similarly, ERA5 DMWS 287 

widely increased (+0.000 to +0.100 m s-1 dec-1), but was only significant (p < 0.05) over a few 288 

southern parts of the study region. The divergences between reanalyses and station observations 289 

indicate the crucial role played by urbanization on weakening DMWS, as reanalyses mostly 290 

represent the change of climate variability (Vautard et al., 2010). 291 

 292 

3.2. Impact of urbanization on DMWS trends 293 

Figure 4 displays the distribution of night-time lighting in 1992 and 2015, as a proxy for 294 

urbanization intensity, with urbanization rate revealed by the difference in night-time lighting 295 

between these years across the YRD. Figure 4(a) clearly shows that in 1992, the majority of the 296 

YRD had very weak night-time lighting (< 10), and only a few (mainly central) regions 297 

contained strong lighting. By 2015, Figure 4(b) shows night-time lighting had widely increased 298 

over the YRD. Areas with strong night-time lighting (> 40) were primarily located in 299 

metropolitan central, coastal and western parts of the region, while night-time lighting in the 300 

mountainous southwestern part of the region remained quite small (< 10; Fig. 4(b)). 301 



 302 

Figure 4(c) shows that rapid urbanization occurred in most of the central the YRD, with the 303 

highest 2015 minus 1992 night-time light difference (NLD > 30) in regions covered by the 304 

megacities (> 10 million inhabitants), e.g., Shanghai, Hangzhou, Suzhou and Nanjing. 305 

Additionally, some coastal cities in the southeastern and inland cities in the north of the study 306 

region also experienced fast urbanization (NLD > 30), due to rapid economic development 307 

associated with international and domestic goods transport networks (e.g., ports and railways). 308 

The lowest NLD values (< 10) were mainly found in the mountainous and hilly southwestern 309 

YRD. Comparing urbanization rates with the magnitude of DMWS trends (Figure 4c, blue 310 

circles) revealed that areas with rapid urbanization growth were accompanied by the largest 311 

decreases of DMWS, and vice-versa. In other words, the spatial distribution of DMWS trends 312 

is correlated with urbanization rates across the YRD. Later, section 3.4, using a regional climate 313 

model simulation, we assess to what degree the physical representation of these urban changes 314 

drives this high correlation.  315 

 316 

Box-and-whisker plots in Figure 5 show DMWS trends in station groups with varied 317 

urbanization rates (see Table 1). Station groups with very low urbanization rates have relatively 318 

weak negative trends of DMWS, while the strongest declining DMWS trends were found in 319 

station groups with the highest urbanization rates. Note that the minimum magnitude of DMWS 320 

trends (represented by the upper whisker in Fig. 5) was stable between the station groups from 321 

low to high urbanization rate (ranging from +0.02 to -0.05 m s-1 dec-1), in contrast to its 322 

maximum magnitude (i.e., the lower whiskers on Fig. 5), suggesting the relationship between 323 



urbanization and DMWS are nonlinear. These results clearly show that DWMS in the YRD has 324 

been weakened by urban growth during 1990-2015.  325 

 326 

3.4 Impact of urbanization on DMWS changes revealed by climate model simulations 327 

Figure 6 shows the distribution of urban areas in 1990 and 2015 in the YRD from the LULC 328 

data sources, and Table 2 displays the changes in the areas of various LULC types between 329 

1990 and 2015. In 1990 (Fig. 6a), urban areas were quite sparse; with most located in the central 330 

and northern parts of the YRD. This pattern is strongly consistent with the night-time light 331 

distribution in 1992 (2 years later than 1990, see Fig. 4a). Further, urban areas in 2015 mainly 332 

occupied the central, northern and southeast coastal parts, which is again highly consistent with 333 

the 2015 night-time light pattern (Fig. 4b). Note that much greater urbanization was detected in 334 

2015 when compared to 1992 (Fig. 6b), especially for those regions that already (in 1992) had 335 

a high proportion of urbanization. When compared to other LULC types, it is clearly seen that 336 

urban area increases represent the dominant LULC changes between 1990 and 2015 over the 337 

YRD (Table 2). The similar patterns of night-time lighting and urban extent confirm that night-338 

time light data are a reliable proxy of the rapid urbanization across the YRD during 1990-2015.  339 

To confirm our hypothesis that the rapid urbanization weakened DMWS, two sensitivity 340 

experiments configured with the same settings and forcing but with different LULC data (i.e., 341 

1990LULC and 2015LULC) were implemented using RegCM4. The spatial distributions of 342 

RegCM4 simulated DMWS in 1990 (forced with 1990LULC) and 2015 (forced with 343 

2015LULC), as well as their difference, are shown in Figure 7. Overall, DMWS for the 344 

1990LULC simulation exhibited a distinctly heterogeneous spatial pattern, manifested as a high 345 



DMWS from the central to northern YRD, and weak DMWS over the southern part (Fig. 7a). 346 

A similar spatial pattern of DMWS was found for the 2015LULC simulation (Fig. 7b). This 347 

indicates that changes in LULC have not caused the change in the spatial distribution of DMWS 348 

in YRD. When considering the difference in DMWS between the two simulations (i.e., 349 

2015LULC minus 1990LULC, Fig. 7c), negative DMWS differences were found in most 350 

metropolitan central and northern (p < 0.1) parts of YRD, and a few in southern coastal regions. 351 

As those areas experienced rapid urbanization from 1990 to 2015, this confirms  that the 352 

decline in DMWS was mainly driven by urbanization (i.e., the LULC changes). Furthermore, 353 

we compared regional means of DMWS in the 1990LULC and 2015LULC simulations and 354 

found that DMWS for the 2015LULC simulation is lower than that for the 1990LULC 355 

simulation by -0.03 m s-1. Note that positive DMWS differences were found over a few southern 356 

and western parts, indicating that vegetation changes rather than urbanization appear to have 357 

increased DMWS in mountainous areas with complex terrain.  358 

 359 

4 Discussion  360 

In this study, we first examined DMWS trends over the YRD, a region that has evidently 361 

increased its urban area according to LULC and night-time lighting during 1990-2015. The 362 

results from station observations showed that DMWS experienced a secular decline during 363 

1990-2015, which is consistent with a previous study of DMWS trends across China, although 364 

different periods were used (Zhang et al., 2020). A previous study reported negative trends in 365 

mean wind speed from 1990-2015 based on station observations over a region containing the 366 

YRD (Li et al., 2018), which along with our findings shows that both mean wind speed and 367 



DMWS experienced a slowdown in recent decades. In contrast, NCEP-NCAR1 and ERA5 368 

reanalysis shows a weakly positive trend in DMWS from 1990 to 2015, leading to increasing 369 

divergence between the reanalysis DMWS and station observed DMWS since 2005. Wind 370 

speed from reanalysis mostly represent the impact of climate variability (e.g., atmospheric 371 

circulation) on wind speed changes (Vautard et al., 2010), as surface roughness changes are not 372 

explicitly taken into account in the assimilation process (Kalnay et al., 1996). Therefore, 373 

opposite trends between the station observations and reanalysis indicate that climate variability 374 

is very likely not be the cause of DMWS change in our study region, and declined DMWS may 375 

well be induced by surface roughness increases (e.g., urbanization, Fig. 8). Albedo-based 376 

surface roughness in the vicinity of many stations located in urban area increased from 2000-377 

2015 too, and annual DMWS shows a negative correlation (-0.32, p > 0.1) with mean annual 378 

surface roughness (Fig. 8). Wu et al. (2017) reported that wind speed change over east China is 379 

not consistent with East Asian summer monsoon variability, , coupled with the results presented 380 

herein, means that the detected observed DMWS declines were most likely driven by rapid 381 

urbanization after reaching a certain threshold (2005).  382 

  The change in night-time lighting between 1992 and 2015 revealed this rapid urbanization 383 

during recent decades in the YRD, which is supported by increases in population, GDP, and the 384 

number of cars in the region (see Fig. S2). By comparing DMWS trends with urbanization rates 385 

(i.e., night-time light increases), it was clearly seen that stations with the strongest negative 386 

DMWS trends were mainly located in metropolitan areas with the fastest urbanization rates, 387 

while stations with the weakest negative DMWS trends (or even slightly positive trends) were 388 

largely distributed over the mountain or hilly areas that experienced the lowest urbanization 389 



rates. This demonstrates that recent DMWS changes over the YRD were mainly driven by the 390 

rapid urbanization during 1990-2015. As urban expansion and development increased both the 391 

number and the height of buildings, the resulting increase in surface roughness could have 392 

weakened the near-surface wind speed, e.g., DMWS, according to the theoretical wind speed 393 

profile (Han et al., 2016). Existing studies have documented a similar relationship between 394 

mean wind speed trend and urbanization-induced surface roughness changes (Li et al., 2018;  
395 

Chen et al., 2020), while our study is one of the few to provide empirical evidence for the effect 396 

of urbanization on extreme winds (Li et al., 2011). 397 

Additionally, we classified stations into five groups based on urbanization rate, and found that 398 

maximum negative trends in DMWS increased with increasing urbanization rate, while the 399 

minimum magnitudes of DMWS trends were generally stable among the five groups. This is 400 

quite a different result when compared to mean wind speed (Li et al., 2018), as both maximum 401 

and minimum magnitudes of negative trends increased with urbanization (Li et al., 2018). This 402 

suggests that the relationship between urbanization-induced roughness and DMWS trends is 403 

more complex than that for mean wind speed. Previous studies have reported an exponential 404 

relationship between magnitude of wind speed and surface roughness (Han et al., 2016; Zeng 405 

et al., 2019), which means surface roughness may have had a stronger impact on stronger winds,  406 

thus extreme winds are more sensitive to local environmental changes (Azorin-Molina et al., 407 

2016; Zhang et al., 2020)than more typical (i.e. more average) winds.  Further, we have 408 

explored the associations between the NDVI and DMWS (Fig. 9) and found that NDVI 409 

decreased in most urban area and increased in most mountainous areas in the YRD during 1990-410 

2015. This indicates that vegetation changes might not be the main cause of declined DMWS 411 



in the YRD.  412 

As the increased urban area has been the dominant LULC change over the YRD during recent 413 

decades (Table 2 and Fig. S3) (Zha et al., 2019), the difference between the simulated DMWS 414 

under the 1990LULC and 2015LULC forcing to a large extent reflects the impact of 415 

urbanization on DMWS changes. The results clearly demonstrate that the simulated DMWS 416 

forced by the 2015LULC was much lower in those regions (e.g., central, north and coastal parts 417 

of the YRD) which experienced rapid urbanization when compared to the simulation forced by 418 

the 1990LULC. This pattern is strongly consistent with the distribution of DMWS changes 419 

based on the station observations and night-time light difference (Fig. 3) and further confirms 420 

that rapid urbanization has weakened DMWS over the YRD from 1990 to 2015. Similar 421 

sensitivity experiments for wind speed using the WRF model demonstrated that regional mean 422 

wind speed in the Beijing metropolitan area has decreased due to urbanization (Hou et al., 2013). 423 

Furthermore, the regional mean difference between DMWS in two sensitivity experiments is -424 

0.03 m s-1, which is much lower than that between 1990 and 2015 based on the station 425 

observations. This is likely due to two main reasons. First, DMWS is the maximum 10-minute 426 

mean wind speed observation during 24 hours of such 10-minute observations, while simulated 427 

DMWS corresponds to maximum hourly mean wind speed over the same 24 hours, noting that 428 

the mean peak value of wind speed in a certain period generally decreases with the increase in 429 

recording frequency (Azorin-Molina et al., 2017). Second, LULC data used in the climate 430 

model cannot realistically capture the building density and height, thus the impact of 431 

urbanization on winds is underestimated in the model simulations (Zha et al., 2019).  432 

For the first time, our study based on sensitivity experiments with a regional climate model 433 



has demonstrated that urbanization weakens the extreme winds defined in the study. Besides 434 

the roughness argument proposed above, the greater atmospheric stability caused by aerosol-435 

induced reductions in the land-surface insolation (Jacobson and Kaufman, 2006) may also 436 

affect DMWS variability. Thus, pollution control in the areas of rapid urbanization may also 437 

play a role. Further studies in other rapidly developing urban regions across the globe are 438 

needed. This is especially the case in rapidly developing economies where urban pollution can 439 

be problematic for human health (Landrigan et al., 2018; Dedoussi et al., 2020) and where 440 

DMWS decreases may exacerbate the existing pollution-induced health problems in such 441 

rapidly growing urban areas. 442 

 443 

5 Conclusions  444 

We found that observed DMWS over the YRD which is a region that has experienced a high 445 

rate of urbanization significantly declined from 1990 to 2015,. Meanwhile, a weak increase in 446 

DMWS was found in the NCEP-NCAR and ERA-5 reanalysis, suggesting that changes in the 447 

large-scale atmospheric circulation might not be responsible for the observed DMWS decreases, 448 

and that reanalysis output is not useful when assessing wind speed trends. Stations showing the 449 

largest negative DMWS trends are mainly located in areas with high urbanization rates as 450 

indicated by night-time light differences between 1992 and 2015. In contrast, no significant 451 

trends in DMWS were found in areas with small urbanization rates. The increased magnitude 452 

of the differences between the reanalyses and the station data since 2005 points to the significant 453 

impact of urbanization after a certain threshold. Two sensitivity experiments conducted with 454 

the RegCM4 model indicate  that the increased urban area from 1990 to 2015 could have 455 



weakened DMWS in the YRD. In summary, our findings provide clear evidence that recent 456 

rapid urbanization in the YRD has weakened both mean wind speed and the extreme winds. 457 

This finding contributes to  improved understanding of the underlying causes behind extreme 458 

wind speed changes in urban environments. 459 
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Table 1. Classification of stations with different urbanization rates as indicated by night-time 708 

light difference (NLD, dimensionless) between 1992 and 2015 for each station.  709 

 710 

Types of Station I II III IV V 



Night light difference 
0≤NLD
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＜20 

20≤  NLD

＜30 
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40 

Number of stations 5 14  22 40 30 

Level of urbanization  

Very 

Low(VL
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Low(L) 
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(H) 
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 713 

Table 2. Areas and proportions of LULC types in 1990 and 2015, and area of LULC changes 714 

between 1990 and 2015 over the Yangtze River Delta. 715 

LULC types 
1990 2015 LULC Changes 

(km2) Area (km2) Proportion Area (km2) Proportion 

 Crops/mixed farming  29754.78  14.40% 28054.98  13.64% -1699.80  

 Short grass  556.11  0.27% 558.61  0.27% 2.50  

 Tall grass  2723.15  1.32% 2516.72  1.22% -206.43  

 Irrigated crop  74475.01  36.03% 64510.86  31.37% -9964.15  

 Semi-desert 93.01  0.05% 49.35  0.02% -43.67  

 Bog or marsh 1820.71  0.88% 1569.25  0.76% -251.46  

 Inland water 5905.44  2.86% 5817.07  2.83% -88.37  

 Evergreen shrub 1931.54  0.93% 1784.40  0.87% -147.14  

 Mixed woodland 9301.46  4.50% 7818.60  3.80% -1482.86  

 Forest/field mosaic 58654.61  28.38% 59299.78  28.84% 645.16  

 Water and land mixture 5929.19  2.87% 6961.93  3.39% 1032.74  

 Urban 4526.05  2.19% 11926.28  5.80% 7400.23  

 Sub-Urban 11007.39  5.33% 14766.71  7.18% 3759.33  

 716 


