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Abstract. In this study we analyzed the spatial distribution, temporal variability and trends in 13 

reference evapotranspiration (ET0) in Spain from 1961 to 2011. Twelve methods were analyzed to 14 

quantify ET0 from quality controlled and homogeneous series of various meteorological variables 15 

measured at 46 meteorological stations. Some of the models used are temperature based (e.g., 16 

Thornthwaite, Hargreaves, Linacre), whereas others are more complex and require more 17 

meteorological variables for calculation (e.g., Priestley–Taylor, Papadakis, FAO–Blaney–Criddle). 18 

The Penman–Monteith equation was used as a reference to quantify ET0, and for comparison 19 

amongst the other methods applied in the study. No major differences in the spatial distribution of 20 

the average ET0 was evident among the various methods. At annual and seasonal scales some of the 21 

ET0 methods requiring only temperature data for calculation provided better results than more 22 

complex methods requiring more variables. Among them the Hargreaves (HG) equation provided 23 

the best results, at both the annual and seasonal scales. The analysis of the temporal variability and 24 

trends in the magnitude of ET0 indicated that all methods show a marked increase in ET0 at the 25 

seasonal and annual time scales. Nevertheless, results obtained suggested substantial uncertainties 26 

among the methods assessed to determine ET0 changes, due to differences in temporal variability of 27 

the resulting time series, but mainly for the differences in the magnitude of change of ET0 and its 28 

spatial distribution. This suggests that ET0 trends obtained by means of methods that only require 29 

temperature data for ET0 calculations should be evaluated carefully under the current global 30 

warming scenario. 31 
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1. Introduction 35 

Evapotranspiration (ET) is an essential component of both climate and hydrological cycles, and has 36 

significant agricultural, ecological and hydrological implications. ET uses approximately three 37 

fifths of the available annual solar radiation globally received at the Earth’s surface (Wang and 38 

Dickinson, 2012; Wild et al., 2013). In addition to the energy balance, ET is also a major 39 

component of the water cycle, as it accounts for approximately two thirds of the precipitation falling 40 

on land (Baumgarter and Reichel, 1975). ET is important in several atmospheric processes, as it 41 

determines the supply of water to the atmosphere from the oceans and terrestrial areas. It affects the 42 

magnitude and spatial distribution of global temperature and pressure fields (Shukla and Mintz, 43 

1982), and it may affect the occurrence of heat waves (Seneviratne et al., 2006) and precipitation 44 

processes (Zveryaev and Allan, 2010).  45 

The concepts of actual evaporation (ETa) and reference evaporation (ET0) are defined as follows: 46 

the ETa is the quantity of water that is transferred as water vapour to the atmosphere from an 47 

evaporating surface (Wiesner, 1970) under real conditions (e.g. water availability, vegetation type, 48 

physiological mechanisms, climate), whereas ET0 represents the atmospheric evaporative demand 49 

of a reference surface (generally a grass crop having specific characteristics), and it is assumed that 50 

water supply from the land is unlimited (Allen et al., 1998). The only factors affecting ET0 are 51 

climatic parameters, given some reference crop and associated parameters, e.g., albedo and 52 

vegetation height. Consequently, ET0 is a climatic parameter and can be computed from weather 53 

data. ET0 expresses the evaporating power of the atmosphere at a specific location and time of the 54 

year and it allows for spatial and temporal comparisons, independently of different land cover types 55 

and temporal coverage changes (Katerji and Rana, 2011). ETa will be less than or equal to ET0, but 56 

never greater. Equally, ET0 cannot be measured directly using meteorological instruments, as it 57 
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depends on a number of meteorological variables (net radiation, air temperature, surface pressure, 58 

wind speed and relative humidity). 59 

In recent decades paradoxical processes have been detected related to the evolution of the 60 

atmospheric evaporative demand (AED). Despite the observed recent climate warming, a general 61 

decrease in pan evaporation has been reported (Peterson et al., 1995; Roderick and Farquar, 2004), 62 

which could be explained by decreased solar radiation (e.g.,  Matsoukas et al., 2011; Roderick and 63 

Farquar, 2002) and/or wind speed decrease (McVicar et al., 2012). Nevertheless, Brutsaert and 64 

Parlange (1998) offered theoretical explanations why a trend of decrease in pan evaporation is not 65 

necessarily an indication of decreasing ET0 and ETa. Moreover, recent studies have suggested major 66 

limitations in the use of pan ET measurements to assess current AED trends (Fu et al., 2009; Abtew 67 

et al., 2011).  68 

ET0 is currently considered to be a reliable parameter for assessing long-term trends of the AED 69 

(Katerji and Rana, 2011), as it only depends on the meteorological conditions, has a clear physical 70 

meaning, and the meteorological variables necessary to calculate ET0 are available worldwide and 71 

have been measured for many years. Although ET0 may not correspond to accurate ETa estimates, 72 

which depend largely on water availability, soil characteristics and vegetation properties, assessing 73 

ET0 trends is of great interest because it is a measure of aridity conditions and crop requirements, 74 

and has major implications for land desertification and food production. 75 

Various studies have analyzed global ET0 trends based on interpolated gridded datasets (e.g. Dai, 76 

2010; Sheffield et al., 2012) and reanalysis data (Matsoukas et al., 2011), but the results have 77 

differed markedly, depending on the datasets and methods used to estimate ET0. Regional and local 78 

studies based on observational datasets have shown a variety of results in different regions of the 79 

world. In some cases the trends in ET0 have been negative, including for the Yangtze River (Xu et 80 

al., 2006), the Yellow River (Ma et al., 2012) and the Tibetan plateau (Zhang et al., 2007) in China. 81 

Other studies have shown positive trends in ET0, including in central India (Darshana et al., 2012), 82 

Iran (Kousari and Ahani, 2012; Tabari et al., 2012) and Florida (Abtew et al., 2011). Moreover, in 83 
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some areas (e.g. Australia) there has been large spatial variability in the evolution of ET0 during 84 

recent decades (Donohue et al., 2010). 85 

One of the most important areas worldwide in relation to the impact of climate change processes is 86 

the Mediterranean region, because of its high spatial and temporal variability in precipitation 87 

(Lionello, 2012). Various empirical studies have shown that water availability has decreased in this 88 

area in recent decades (García-Ruiz et al., 2011). Hypotheses to explain this decrease are related to 89 

land cover changes and human management, but also climate change processes to which ET is 90 

strongly connected.  91 

Although there is a number of agronomic studies estimating the atmospheric evaporative demand 92 

(AED) with the purpose of improving the selection of more appropriate crops and irrigation 93 

practices (i.e., water saving) in the Mediterranean region, some of them using evaporation 94 

observations from lysimeters for validation (e.g., Steduto et al., 2003; Lorite et al., 2012), there are 95 

very few studies that have analysed temporal variability and trends of ET0 in the last decades. 96 

Among these, Espadafor et al. (2011) analyzed ET0 trends from 1960 to 2005 at eight stations in 97 

southern Spain, and showed a general increase in ET0. Papaioaunou et al. (2011) showed a general 98 

increase in ET0 in Greece since the early 1980s, mainly driven by the evolution of global radiation, 99 

whereas Platineau et al. (2012) used the same calculation method to show a general increase in ET0 100 

in Romania, resulting from an increase in temperature. Palumbo et al. (2011) analyzed the trends in 101 

ET0 in southern Italy; they found an increase of 14 mm/decade between 1957 and 2008, which has 102 

increased the water requirements of the main cultivated crops by 7 mm/decade. Vergni and Todisco 103 

(2011) analyzed the evolution of ET0 in central Italy, and found a dominant positive trend between 104 

1951 and 2008. In the studies noted above, ET0 was calculated using a variety of formulae, which 105 

makes it difficult to compare the magnitudes of change reported, and to assess the robustness of the 106 

observed trends. Moreover, some of the studies are applying empirical methods to estimate ET0 107 

only using temperature records. Limitations of the use of this type of formulation are obvious in 108 

climate change studies since an increase in temperature will translate to increased AED (Roderick et 109 
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al., 2009), when this is a synthesis of two (radiative and aerodynamic) components not only 110 

determined by the evolution of temperature but also of changes in solar radiation, wind speed and 111 

relative humidity (Penman, 1948). For these reasons, studies that compare the reliability of 112 

temperature-based methods and robust physical estimates based on both radiative and aerodynamic 113 

components to estimate the AED evolution are high priority in this region.   114 

In this study we analyzed trends in ET0 in Spain from 1960 to 2011. Some of the methods for 115 

calculating ET0 were based on temperature records, while others involved several meteorological 116 

variables (e.g. relative humidity, wind speed, radiation). The objectives were: i) to compare average 117 

estimates of ET0 obtained using the various methods; ii) to determine the magnitude and spatial 118 

patterns of ET0 variability; and iii) to evaluate the reliability of the different methods for assessing 119 

ET0 trends. Overall, this is the first study covering the complete Spanish territory and, to our 120 

knowledge, including a complete comparison of methods based on quality controlled and 121 

homogenised datasets of different climate variables across the Mediterranean basin. 122 

 123 

 124 

2. Methods 125 

2.1. ET0 methods 126 

The International Commission for Irrigation (ICID), the Food and Agriculture Organization of the 127 

United Nations (FAO), and the American Society of Civil Engineers (ASCE) have adopted the 128 

Penman-Monteith (PM) method (Allen et al., 1998) as the standard method for computing ET0 from 129 

climate data. The PM method is widely used because it is predominantly a physically-based 130 

approach that can be used globally, and has been widely tested using lysimeter data obtained under 131 

a broad range of climate conditions (e.g. Itenfisu et al., 2000). 132 

The main drawback of the PM method is the relatively large amount of data involved, as it requires 133 

data on solar radiation, temperature, wind speed and relative humidity. For this reason, numerous 134 

other methods have been developed to calculate ET0 using less data. In this study we used the PM 135 
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method as a reference, and 11 other methods commonly used worldwide that require much less 136 

information. Some of them are recommended when there is low availability of data (e.g., 137 

Hargreaves; Allen et al., 1998) whereas others are of high use for agricultural purposes and 138 

irrigation management (e.g., Blaney-Criddle, Priestley-Taylor). They do not cover the complete 139 

methods existing to obtain ET0, but they are a representative sample and it included the most used 140 

methods. We distinguished between the temperature-based methods and those requiring additional 141 

meteorological variables. 142 

 143 

2.1.1. The reference FAO-56 Penman-Monteith (PM; Allen et al., 1998) equation 144 

The FAO PM method was developed by defining the reference crop as a hypothetical crop with an 145 

assumed height of 0.12 m, a surface resistance of 70 s m–1 and an albedo of 0.23. This closely 146 

approximates the evaporation expected from an extensive surface of actively growing and 147 

adequately watered green grass of uniform height (Allen et al., 1998), and is defined by the 148 

equation: 149 

ܧ ଴ܶ ൌ
0.408∆ሺܴ௡ െ ሻܩ ൅ ߛ 900

ܶ ൅ ଶሺ݁௦ݑ273 െ ݁௔ሻ

∆ ൅ ሺ1ߛ ൅ ଶሻݑ0.34
 

where ET0 is the reference evapotranspiration (mm day–1), Rn is the net radiation at the crop surface 150 

(MJm–2 day–1), G is the soil heat flux density (MJ m–2 day–1), T is the mean air temperature at a 151 

height of 2 m (°C), u2 is the wind speed at 2 m height (m s–1), es is the saturation vapor pressure 152 

(kPa), ea is the actual vapor pressure (kPa), es-ea is the saturation vapor pressure deficit (kPa),  is 153 

the slope vapor pressure curve (dependent on temperature) (kPa °C–1) and  is the psychrometric 154 

constant (kPa °C–1). 155 

 156 

2.1.2. Methods based on temperature data 157 

2.1.2.1. The Thornthwaite equation (TH; Thornthwaite, 1948) 158 
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This is one of the simplest and most widely used approaches to calculation of ET0, and only 159 

requires monthly mean temperature. The ET0 (mm month–1) is obtained using the equation: 160 

ܧ ଴ܶ ൌ ܭ16 ൬
10ܶ
ܫ
൰
௠

 

 where I is a heat index (calculated as the sum of 12 monthly index values i, which is derived from 161 

mean monthly temperature as
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

T
i ), s a coefficient depending on I (162 

492.079.171.775.6 22537   IEIEIEm ), and K is a correction coefficient computed as a 163 

function of the latitude and month ( 














3012

NDMN
K ), where NDM is the number of days of the 164 

month and N is the total daytime hours for the month. 165 

 166 

2.1.2.2. Blaney-Criddle equation (BC; Blaney and Criddle, 1950) 167 

Blaney and Criddle (1950) developed a temperature-based equation for agricultural purposes. In 168 

this method ET0 (mm day–1) is calculated using the equation: 169 

ܧ ଴ܶ ൌ ሺ0.46ܶ݌ ൅ 8.13ሻܭ 

where p is the percentage of total daytime hours in the month in relation to the total daytime hours 170 

in the year, and K is a coefficient that ranges from 0.15 and 1.44 depending on the cultivation type 171 

and the region. For this study an average value of 0.85 was selected, following Xu and Singh 172 

(2002). 173 

 174 

2.1.2.3. The Linacre equation (LIN; Linacre, 1977) 175 

Linacre simplified the Penman equation in relation to a vegetation surface that has an albedo of 176 

25% and is well provided with water. In this method ET0 (mm day–1) is calculated using the 177 

equation: 178 

ܧ ଴ܶ ൌ
500ܶ݉ ሺ100 െ ሻܣ ൅ 15ሺ0.0023݄ ൅ 0.37ܶ ൅ 0.53ܴ ൅ 0.35ܴ௔௡ െ 10.9ሻ⁄

80 െ ܶ
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where Tm = T + 0.006h, h is the elevation above sea level (m), A is the latitude in degrees, R is the 179 

difference between the maximum and minimum temperatures (monthly averages; °C) and Ran is the 180 

difference between the average mean temperature of the warmest and coldest months. 181 

 182 

2.1.2.4. The Hargreaves equation (HG; Hargreaves and Samani, 1985) 183 

This method only requires information on the maximum and minimum temperatures, and 184 

extraterrestrial solar radiation. The ET0 (mm day–1) is calculated using the equation: 185 

ܧ ଴ܶ ൌ 0.0023ܴ௔ܴ଴.ହሺܶ ൅ 17.8ሻ      186 

where R is defined in the Linacre equation, and Ra is the extraterrestrial solar radiation (mm day–1) 187 

 188 

2.1.2.5. The Kharrufa equation (KH, Kharrufa, 1985) 189 

Kharrufa (1985) derived an equation through correlation of ET0/p and T. In this method ET0 (mm 190 

month–1) is calculated using the equation: 191 

ܧ ଴ܶ ൌ  ଵ.ଷܶ݌0.34

 192 

2.1.2.6. The modified Hargreaves equation (HG-PP; Droogers and Allen, 2002) 193 

Droogers and Allen (2002) modified the original Hargreaves equation by including a rainfall term, 194 

on the assumption that monthly precipitation can represent relative levels of humidity. The ET0 195 

(mm day–1) is calculated using the equation: 196 

ܧ ଴ܶ ൌ 0.0013ܴ௔ሺܶ ൅ 17.0ሻሺܴ െ 0.0123ܲሻ଴.଻଺      197 

where P is the monthly total precipitation in mm. 198 

 199 

2.1.3. Methods requiring more meteorological variables 200 

2.1.3.1. The Turc equation (T; Turc, 1955) 201 

Turc (1955) proposed an empirical relationship in which ET0 is calculated using the relative 202 

humidity, the average temperature, and the solar radiation. ET0 (mm month–1) is function of the 203 
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average relative humidity. If the monthly average relative humidity is > 50%, ET0 = 0.40 [T/(T 204 

+15)] (23.884RS + 50). If the monthly average relative humidity is < 50%, ET0 = 0.40 [T/(T +15)] 205 

(23.884RS + 50)[1+(50–RH)/70]. In these equations Rs is the solar radiation (MJ m–2 day–1) and RH 206 

is the mean relative humidity (%). 207 

 208 

2.1.3.2. The Papadakis equation (P; Papadakis, 1966) 209 

Papadakis used saturation vapor pressure corresponding to monthly temperatures to estimate ET0 210 

(mm month–1) using the equation: 211 

ܧ ଴ܶ ൌ 5.625	ሾ݁௦ሺ ௠ܶ௔௫ሻ െ ݁ሺ ௗܶሻሿ 

 where es(Tmax) is the saturation water pressure corresponding to average maximum temperature 212 

(kPa), and e(Td) is the saturation water pressure corresponding to the dewpoint temperature (kPa). 213 

 214 

2.1.3.3. The Priestley-Taylor equation (PT; Priestley and Taylor, 1972) 215 

Priestley and Taylor (1972) used an equation derived from the combination method of Penman, in 216 

which the aerodynamic term is replaced by a coefficient (). The ET0 (mm day–1) is calculated 217 

using the equation: 218 

ܧ ଴ܶ ൌ ߙ ൤
∆

∆ ൅ ߛ
൨ܴ௡ 

where a standard value for (1.26) is used. 219 

 220 

2.1.3.4. The FAO-Blaney-Criddle equation (FAO-BC; Doorenbos and Pruitt, 1977) 221 

Doorenbos and Pruitt (1975) made an important modification of the Blaney-Criddle method, which 222 

includes the influence of radiation, wind speed and relative humidity. The equation is derived from 223 

a calibration using lysimeter measurements. The ET0 (mm day–1) is calculated (Frevert et al., 1981) 224 

using the equations: 225 

ܧ ଴ܶ ൌ ܽ௕ ൅ ܾ௕݂, 226 
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݂ ൌ ሺ0.46ܶ݌ ൅ 8.13ሻ, 227 

ܽ௕ ൌ ௠௜௡ܪܴ	0.0043 െ
௡

ே
െ 1.41 and 228 

ܾ௕ ൌ 0.81917 െ ௠௜௡ܪܴ	0.0040922 ൅ 1.0705
݊
ܰ
൅ ଶݑ	0.065649 െ ௠௜௡ܪܴ	0.0059684

݊
ܰ

െ  ଶݑ௠௜௡ܪܴ	0.000597

where RHmin is the minimum relative humidity (monthly average) (%) and n is the observed number 229 

of sun hours (monthly average; hours). 230 

 231 

 232 

2.1.3.5. The Radiation method (R; Doorenbos and Pruitt, 1977) 233 

This is similar to the Priestley-Taylor method, but based on surface solar radiation rather than net 234 

radiation. The equation proposed by Doorenbos and Pruit (1977) is: 235 

ܧ ଴ܶ ൌ ܽ ൅ ܾ ൤
∆

∆ ൅ ߛ
൨ܴ௦ 

where Rs is the solar radiation (mm day–1). The coefficients a and b can be obtained according to 236 

Frevert et al. (1982), where a = –0.3 and ܾ ൌ 1.0656 െ ܪ0.0012795ܴ ൅ ଶݑ0.044953 െ237 

ଶݑܪ0.00020033ܴ െ ଶܪ0.000031508ܴ െ ଶݑ0.0011026
ଶ. 238 

 239 

2.2. Datasets 240 

In applying the various ET0 equations we used data for variables measured at numerous 241 

meteorological stations. Allen et al. (1998; Chapter 3 of the FAO-56 publication) detailed the 242 

variables required to calculate ET0 using the PM equation. These include: i) monthly average 243 

maximum and minimum air temperatures (°C); ii) monthly average actual vapor pressure (ea; kPa); 244 

iii) average monthly net radiation (MJ m–2 day–1); and iv) monthly average wind speed (m s–1) 245 

measured 2 m above ground level. Among these ea is not measured at meteorological stations, but 246 

can be calculated from relative humidity and temperature (Allen et al., 1998). In addition, the 247 

monthly average net solar radiation is not commonly available from meteorological stations, and 248 
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generally few and only short time series of surface solar radiation are available in Spain (Sanchez-249 

Lorenzo et al., 2013). However, this parameter is commonly estimated from the monthly averages 250 

of daily sunshine hours, measured using sunshine duration recorders (e.g. the Campbell-Stokes 251 

recorder) given close agreement between sunshine duration and surface shortwave radiation (Long 252 

et al., 2010). Figure 1 provides an example showing the relationship between monthly average 253 

global solar radiation (Sanchez-Lorenzo et al., 2013) and daily average duration of sunshine hours 254 

(Sanchez-Lorenzo et al., 2007) for seven stations in Spain from 1980 to 2010. Close agreement 255 

between the two variables is evident (Pearson’s r = 0.89) and provided a high degree of reliability 256 

in determining Rn and Rs from time series of the duration of daily sunshine. 257 

The necessary parameters: soil heat flux density (G),  extraterrestrial radiation (Ra), net and surface 258 

solar radiation (Rn and Rs, respectively), the psychrometric constant, the mean saturation pressure 259 

(es), the slope of the saturation vapor pressure curve () and wind speed at the standard height of 2 260 

m above ground, were obtained according to Allen et al. (1998) using maximum and minimum 261 

temperature, sunshine duration, wind speed, relative humidity, and surface atmospheric pressure. 262 

Precipitation was also included to enable application of the modified Hargreaves equation. 263 

Only the first order meteorological stations (approximately 100) of the weather observation network 264 

of the Spanish State Meteorological Agency (AEMET) measure all the variables necessary to 265 

calculate ET0 using the equations described above, but these contain all the historical records 266 

needed to determine recent trends. Using these records, Sanchez-Lorenzo et al. (2007) created a 267 

homogeneous dataset of sunshine duration for the Iberian Peninsula since the beginning of the 20th 268 

century. González-Hidalgo et al. (2011) developed a dense and homogeneous precipitation dataset 269 

for Spain. Vicente-Serrano et al. (2014) obtained 50 homogeneous time series of relative humidity 270 

in Spain. To obtain specific humidity they also obtained quality controlled and homogeneous series 271 

of maximum and minimum temperature and surface pressure. Finally, Azorin-Molina et al. (2013) 272 

have recently developed a homogeneous dataset of wind speed at 10 m height for the entire Iberian 273 

Peninsula and the Balearic Islands. We used these datasets, updated to 2011, as they are the most 274 
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reliable corresponding to the various meteorological variables needed to calculate ET0 series for 275 

Spain using the 12 equations noted above. 276 

A total of 46 stations are available for continental Spain and the city of Melilla, in northern Africa 277 

(Figure 2). From the homogeneous series of temperature, precipitation, pressure, wind speed, 278 

sunshine duration and relative humidity, we computed a single regional series for mainland Spain 279 

following Jones and Hulme (1996). 280 

 281 

2.3. Validation statistics and trend analysis 282 

Using the time series of ET0 derived from the 12 ET0 equations we determined the seasonal (winter: 283 

December–February; spring: March–May; summer (June–August; autumn; September–November) 284 

and annual ET0 averages. As the PM equation provided the most reliable estimates of ET0, we used 285 

the PM values as a reference against which to compare the spatial and temporal estimates obtained 286 

using the other methods, despite the limitations associated with the large number of variables 287 

involved in its calculation. For this comparison we used various error/accuracy statistics (Willmott, 288 

1982) including: the coefficient of determination (R2); the mean bias error (MBE); the mean 289 

absolute difference (MAD), which is a measure of the average difference of the ET0 estimations; 290 

and the agreement index (D; Willmott, 1981). D is a standardized measure of the degree of model 291 

prediction error and varies between 0 and 1. A value of 1 indicates a perfect match, and 0 indicates 292 

no agreement at all. It overcomes some disadvantages of the abovementioned measures since it 293 

scales with the magnitude of variables and enables spatial and seasonal comparison of ET0 values, 294 

independent of differences in the ET0 magnitude and range for each month. Table 1 provides the 295 

formulations of error measures used in this study. 296 

To analyze changes in ET0 we used the nonparametric coefficient (Mann-Kendall tau) that measure 297 

the degree to which a trend is consistently increasing or decreasing. To assess the magnitude of 298 

change we used a regression analysis between the series of time (independent variable) and the ET0 299 
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series (dependent variable). The slope of the regression line indicated the change (ET0 change per 300 

year), with greater slope values indicating greater change. 301 

 302 

3. Results 303 

3.1. Average values 304 

The average annual and seasonal ET0 values show variability among the 46 stations independent of 305 

season, but differences are also evident among the ET0 methods (Fig. 3). For example, the HG-PP, 306 

LIN, KH, FAO-BC and P equations indicated greater ET0 spatial variability relative to the other 307 

methods. Seasonal differences were apparent, with the LIN and BC methods showing the greatest 308 

overestimation of ET0 for winter and autumn compared with the PM method, whereas for spring 309 

and summer the FAO-BC equation showed the greatest overestimates. The THO and PT methods 310 

tended to underestimate ET0 during the various seasons. At the annual scale the HG and HG-PP 311 

methods tended to provide the most similar estimates of ET0 to those obtained using the PM 312 

method. 313 

Among the various methods the spatial patterns of the annual ET0 average values showed clear 314 

differences along a north–south gradient (Fig. 4). Although the spatial patterns were similar (higher 315 

values in the south and southeast of the Iberian Peninsula, and lower values in the north) the 316 

magnitudes varied. Values (spatially and in magnitude) based on the HG method were in agreement 317 

with those of the PM method. In Appendices, the various error/accuracy statistics used to compare 318 

the ET0 averages based on the PM and other equations are showed in Table A.1.  319 

 320 

3.2. Temporal variability 321 

Some ET0 methods (THO, BC, PT and R) were characterized by low temporal variability and low 322 

relative differences in ET0 among years (Fig. 5). In contrast, other methods (LIN, FAO-BC and P) 323 

showed marked interannual variability. The PM method provided intermediate temporal variability 324 

that was similar to that observed for the HG, HG-PP and KH methods. Independent of the method 325 
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there was a large increase in ET0 at the annual scale over continental Spain. The HG method 326 

showed the closest agreement with the PM ET0 in terms of temporal evolution, and particularly 327 

following 1990 was very similar in both the temporal variability of ET0 and its magnitude. The 328 

differences in ET0 variability among the methods may be important at the seasonal scale (Fig. 6). In 329 

winter the low temporal variability in ET0 based on the PM method was similar to that observed 330 

using the R and PT methods. Other methods including FAO-BC and LIN showed marked 331 

interannual variability, and the BC method provided the highest ET0 values. There was no general 332 

increase in ET0 during winter, independent of the method used. Interannual variability in spring was 333 

much greater, with the highest ET0 values being associated with the FAO-BC method. The 334 

evolution of ET0 as measured by the PM method was very similar to that found for the HG, HG-PP 335 

and PT methods. As for winter the THO method produced the lowest values and showed much less 336 

temporal variability than the other methods. The highest ET0 rates were found in summer, although 337 

some methods (FAO-BC, LIN, HG-PP and P) showed much greater temporal variability than the 338 

PM method. In summer the PM method shows the greatest increase in ET0. From 1960 to 1990 the 339 

HG method showed similar values to those derived from the PM method, but produced lower 340 

values for the period 1990–2011. For autumn, most of the methods showed higher ET0 values than 341 

the PM method. Thus, in autumn a general increase in ET0 was found using most of the equations, 342 

but was much less than was observed for summer.  343 

Based on the coefficients of determination obtained for each of the 46 stations, the methods that 344 

require more variables in their calculation tended to show higher R2 values than the temperature-345 

based models (Fig. 7). This pattern was observed at both the seasonal and annual scales. Thus, the 346 

FAO-BC and R methods showed very high coefficients and small differences among observatories 347 

in spring and summer. The temperature-based methods tended to show greater variability in the R2 348 

coefficients among stations than did the methods requiring a greater number of meteorological 349 

variables; the exception was the PT method, which also showed marked differences among 350 

observatories. There were no clear spatial patterns in the spatial distribution of R2 values obtained 351 
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from the annual series, but the methods that provided the highest average R2 values tended to show 352 

higher coefficients for most observatories (Figure 8). The same pattern was identified for those 353 

methods showing low coefficient values. Exceptions were the HG and HG-PP methods, for which 354 

higher coefficient values were found for central Spain relative to observatories located in southern 355 

and northern regions. Nevertheless, although the methods based on a greater number of 356 

meteorological variables tended to be more accurate in reproducing the temporal variability in ET0 357 

derived using the PM method, they did not always accurately reproduce the magnitude of ET0. For 358 

this reason the D index (see Section 2.3) provided a more reliable comparison among methods. A 359 

box plot of D values, enabling comparison of the seasonal and annual PM ET0 series with series 360 

obtained using the other methods showed no clear differences between the methods based on 361 

temperature alone and those involving other meteorological variables (Fig. 9). For winter the D 362 

values tended to be low for the various observatories, and consequently there was no method better 363 

able to reproduce both the temporal variability and magnitude of the ET0 values obtained using the 364 

PM method. In contrast, for spring and summer the temperature-based methods tended to produce 365 

higher D values (with the exception of the TH method) than the other methods. Thus, for both these 366 

seasons the HG method produced slightly higher D values than the other methods. At the annual 367 

scale the HG and T methods also produced higher D values. Therefore, in terms of the efficiency of 368 

reproducing the ET0 variability found using the PM equation, the number of variables needed in the 369 

calculation of ET0 was not the determining factor. Thus, with the exception of the TH method, 370 

simple equations including the KH method, which only depends on mean temperature, provided 371 

better agreement coefficients than other more complex methods (e.g. the FAO-BC and R methods). 372 

At the annual scale there were no marked spatial patterns in the distribution of D values (Fig. 10), 373 

suggesting there were no regions for which one method better reproduced the temporal variability in 374 

ET0 based on the PM method. 375 

 376 

3.3. Long-term trends 377 
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In Appendices, the number of observatories with positive and negative trends in annual and 378 

seasonal ET0 between 1961 and 2011 is showed in Table A.2. Although the various methods were 379 

in general agreement in indicating a dominant positive trend in ET0 in Spain, the magnitude of 380 

change differed markedly among the methods. Analysis based on data for each of the 381 

meteorological observatories indicated marked differences between the magnitude of change based 382 

on the PM method and the other methods used in the study (Fig. 11). It was evident that, relative to 383 

the results obtained using the PM method, methods requiring additional variables were not clearly 384 

advantageous compared with methods based on temperature alone for assessing ET0 trends. Thus, 385 

the box plots show that the method showing the best agreement with the PM method in one season 386 

could have the least agreement in a different season (e.g. the TH method for summer and autumn).  387 

The magnitude of change based on the PM method did not show clear spatial patterns: with the 388 

exception of some observatories in the southeast, the main increase in ET0 occurred in the northeast 389 

area of the Iberian Peninsula (Fig. 12). Changes in magnitude were much lower based on the TH, 390 

HG, BC, PT, T and R methods. The HG-PP method indicated a similar pattern to the PM method 391 

for northeast Spain, but for other areas it tended to underestimate the magnitude of change. The 392 

FAO-BC method provided a more similar spatial pattern to the PM method, but tended to 393 

overestimate the increase in ET0 in the northeast, while the LIN, KH and P methods appeared to 394 

overestimate the change in ET0 over most of mainland Spain. In average, the PM method indicated 395 

an increase of 24.5 mm decade–1, with the greatest increase occurring in summer (12 mm decade–1), 396 

although there were significant increases in the other seasons (Table 3). The other methods also 397 

showed positive changes, but the magnitudes differed markedly from those derived using the PM 398 

method. The temperature-based methods varied substantially, with the TH, HG and BC methods 399 

underestimating ET0 changes at both the annual and seasonal scales relative to the PM method. In 400 

contrast, the LIN and KH methods overestimated the magnitude of ET0 changes. Methods using 401 

more variables than temperature alone also showed differences from the PM method. Thus, the PT 402 

and R methods clearly underestimated the increase in ET0 at both the seasonal and annual scales 403 
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relative to the PM values, and the changes based on the T method were also smaller. In contrast, the 404 

P method substantially overestimated trends in ET0, while the FAO-BC method provided the most 405 

accurate values in relation to the PM results. 406 

The various ET0 methods show inability to reproduce the spatial patterns in the magnitude of 407 

change in ET0 using the PM method (Fig. 13); at both the annual and seasonal scales there was very 408 

little agreement with the latter method. The various ET0 equations based only on temperature data 409 

failed to reproduce the patterns in the magnitude of ET0 change across Spain. In addition, the 410 

methods requiring more variables for calculation differed markedly. For example, the spatial pattern 411 

obtained using the PT method showed no agreement with the PM method, whereas the FAO-BC 412 

and R methods showed a degree of agreement. At the seasonal scale the pattern was quite similar. 413 

Temperature based-methods tended to show worse results than the methods involving more 414 

variables, mainly during summer months.  415 

 416 

4. Discussion and conclusions 417 

In this study we estimated the magnitude and temporal evolution of ET0 in Spain between 1961 and 418 

2011 using a high quality dataset of diverse meteorological variables. Using the Penman-Monteith 419 

(PM) method as a reference, we compared the reliability of a range of other methods to quantify 420 

ET0. We showed that these provided reasonable estimates with respect to the spatial patterns of 421 

average ET0. For the annual and seasonal averages some of the ET0 methods requiring only 422 

temperature data for calculation provided more agreement with the PM than more complex methods 423 

requiring more variables. Nevertheless, although all methods are reproducing the geographic 424 

gradients of ET0, the differences in average magnitude can be important, even among methods that 425 

only use temperature in calculation (e.g. Thornthwaite and Linacre). It means that not only the 426 

available meteorological records are relevant in ET0 calculations but also the calculation algorithms 427 

are also largely determining noticeable differences.  428 



18 
 

Among the various methods the Hargreaves (HG) equation provided the best results, at both the 429 

annual and seasonal scales. This equation has been suggested to be the best alternative where data 430 

are scarce (e.g. Droogers and Allen, 2002; Martínez-Cob, 2002; Hargreaves and Allen, 2003 431 

Alexandris et al., 2008). Therefore, to determine average ET0 values in Spain when data availability 432 

is limited we recommend use of the HG equation. There were no significant spatial differences in 433 

the performance of this equation in either humid (northern) or dry (southeast) climatic areas in 434 

Spain.  435 

We also showed a general positive increase in ET0 using the various methods. Thus, most of the 46 436 

meteorological stations analyzed showed positive and statistically significant trends in ET0. This is 437 

consistent with other studies in the Mediterranean region based on observational datasets (Chaouche 438 

et al., 2010; Espadafor et al., 2011; Papaioaunou et al., 2011; Polumbo et al. 2011; Vergni and 439 

Todisco, 2011; Kitsara et al., 2012). The magnitude of ET0 change in Spain at the annual scale 440 

found using the PM equation (24.4 mm decade–1) was similar to that reported for Greece between 441 

1983 and 2001 (Papaioaunou et al., 2011), and southeast France between 1970 and 2006 (16–40 442 

mm decade–1; Chaouche et al., 2010), and was very similar to that reported by Espadafor et al. 443 

(2011) for nine stations in southern Spain between 1960 and 2005 (24 mm decade–1).  444 

We particularly note that the observed trends since the 1960s are the first to have been determined 445 

using high quality and homogeneous datasets of the variables used in Spain. Moreover, the patterns 446 

observed are consistent with observations in other Mediterranean regions (e.g. Brunetti et al., 2009; 447 

Papaioaunou et al., 2011), which implies that evaporative demand by the atmosphere may be 448 

increasing in the Mediterranean region, associated with the evolution of the meteorological 449 

variables involved; this is likely to increase aridity in the region. Vicente-Serrano et al. (2014) have 450 

showed that changes in ET0 in Spain may be mainly determined by the evolution of relative 451 

humidity and maximum temperature. The decrease in relative humidity would have enhanced the 452 

increase in maximum temperature since the 1960s, particularly during the summer months. This 453 

would explain that the PM equation, which includes a complete evaluation of the aerodynamic 454 
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component (based on relative humidity, air temperature and wind speed) shows the highest 455 

magnitude increase in ET0 among the analysed equations.    456 

Methods having limited data requirements (temperature based-methods) were found to be highly 457 

reliable in reproducing average ET0 values and its general increase in Spain. Nevertheless, analysis 458 

of the temporal variability and trends in the magnitude of ET0 suggested substantial uncertainties 459 

among the methods assessed, given the different climate variables involved in the calculations. 460 

Although temporal variability in the ET0 series found using temperature-based methods 461 

(particularly the HG and HG-PP methods) was similar to that based on the PM method, reproducing 462 

the magnitude of change in ET0 was more problematic. Thus, with very few exceptions the methods 463 

did not adequately reproduce the spatial patterns of change observed using the PM equation. 464 

Temporal changes in ET0 are not only driven by temperature rise, and the differences in evolution 465 

of the other factors that determine the radiative (i.e., solar radiation) and aerodynamic components 466 

(i.e., air temperature, relative humidity and wind speed) (e.g., McVicar et al., 2012) would 467 

introduce differences among methods and spatially.   468 

Very few studies have compared the performance of various methods for assessing changes in ET0. 469 

At a global scale Dai (2011) and Sheffield (2012) produced contradictory results for how ET0 is 470 

changing, based on analyses using the Thornthwaite (THO) and PM methods, respectively. 471 

Donohue et al. (2010) analyzed recent changes in ET0 in Australia, using five different formulae. 472 

They reported very diverse spatial and temporal changes based on the various methods, and 473 

indicated that those methods based only on temperature variables (e.g. THO) tended to 474 

underestimate ET0 changes, both positive and negative. In Spain, the methods that best reproduced 475 

the PM-based average magnitude, temporal variability and general positive trends in ET0, including 476 

the HG, HG-PP and Turc (T) equations, are not suitable for identifying the magnitude of changes in 477 

ET0 in Spain, and failed to reproduce its spatial patterns. The more complex methods did not 478 

provide better results; this highlights the difficulty of quantifying ET0 changes using simple 479 

methods involving few variables. 480 
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The results of our study in Spain are in general agreement with current hypothesis and observations 481 

that suggest a general increase in atmospheric evaporative demand at the global scale (Brustaert and 482 

Parlange, 1998; Brustaert, 2006), and are consistent with continental water balance studies (e.g. 483 

Walter et al., 2004). Nevertheless, these patterns do not imply greater water supply to the 484 

atmosphere because ETa is largely controlled by the available soil moisture. Droughts have 485 

increased in Spain during recent decades as a consequence of a reduction in precipitation (Vicente-486 

Serrano, 2013). Under this scenario the observed ET0 increase would not favor higher ETa rates 487 

(Vicente-Serrano et al., 2013), but rather an increase in climate aridity because the soil water 488 

availability cannot supply the increased atmospheric demand. Thus, this relationship between ET0, 489 

ETa and aridity was conceptually enunciated by Budyko (1974). His model has been validated by a 490 

number of studies (e.g., Van der Velde et al., 2013; Xu et al., 2014) that showed that the 491 

relationship between the evaporative index (ETa/Precipitation) describes a potential relationship 492 

with the dryness index (ET0/Precipitation) and determined how water-limited or energy-limited are 493 

the different world environments.  494 

In conclusion, our results along with other studies cited above suggest recommending the use of the 495 

HG equation to estimate the average ET0 when only temperature data is available, which can be 496 

useful for agronomic and environmental purposes. Nevertheless, the differences found between the 497 

ET0 estimations by means of PM and the rest of the methods in relation to the ET0 temporal 498 

variability, the magnitude of the ET0 changes and its spatial variability prevent for the 499 

recommendation of any alternative method to the PM equation when few data is available. 500 

Consequently, there is a need of evaluating trends based on methods that only require limited data 501 

for ET0 calculations and developing higher quality series of relative humidity, wind speed and 502 

sunshine duration, in order to apply the robust Penman-Monteith equation. This may relevant for 503 

climate change studies, which are trying to determine ET0 trends under current warming scenario. 504 

 505 
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Table 1: Studies published in the last 15 years analysing ET0 trend across the Mediterranean region. 733 
* indicates the use of a modified method. The evolution correspond to: +, positive trend, -, negative 734 

trend, o, no trend.  735 
 736 

Study  Place  Method  Period  Evolution 

Pavanelli and Capra (2014)  Central Italy  Hargreaves  1926‐2006  ‐ 

García‐Garízabal et al. (2014)  North Spain  Hargreaves  1971‐2000  + 

Capra et al. (2013)  South Italy  Hargreaves*  1921‐2007  ‐ 

Croitoru et al. (2013)  Romania  PM  1961‐2007  + 

Ugarkovic and Kelava (2013)  Croatia  Blaney‐Criddle  1950‐2010  + 

Pravalie (2013)  South Romania  Thornthwaite  1961‐2009  + 

Kitsara et al. (2013)  Central Greece  Hargreaves*  1951‐2001  + 

Paltineanu et al. (2012)  South Romania  PM  2000‐2007  + 

Espadafor et al. (2011)  South Spain  PM  1960‐2005  + 

Moratiel et al. (2011)  Central Spain  PM  1980‐2009  + 

Papaioannou et al. (2011)  Greece  PM  1979‐1999  + 

Mavromatis and Stathis (2011)  Greece  Thornthwaite  1961‐2006  + 

Polumbo et al. (2011)  South Italy  Hargreaves  1957‐2008  + 

Vergni and Todisco (2011)  Central Italy  PM*  1951‐2008  o 

Matzneller et al. (2010)  North Italy  Hargreaves  1952‐2007  + 

Chaouche et al. (2010)  South France  PM  1970‐2006  + 

Kafle and Bruins (2009)  Israel  Thornthwaite  1970‐2002  o 

Zanchettin et al. (2008)  North Italy  Thornthwaite  1820‐2002  + 

Ozdogan and Salvucci, (2004)  South Turkey  PM  1979‐2001  ‐ 

Moonen et al. (2002)  Northeast Italy  Hargreaves  1880‐2000  ‐ 

Cohen et al. (2002)  Israel  PM  1964‐1998  o 

 737 

 738 
  739 
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 740 
Table 2: Error measures used in this study 741 

 742 

743 

 Definitions:  

N: number of observations,  

O: Observed value,  

O : mean of observed values,  

P: Predicted value, 
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Table 3: Annual and seasonal magnitudes of change in ET0 (mm decade-1) based on the 12 methods 744 
for the regional series for mainland Spain. 745 

 746 

  Annual Winter Spring Summer Autumn 
Penman-Montheith 24.5 1.8 7.3 12 3.5 
Thornthwaite 14.3 0 3.5 9.8 1 
Hargreaves 15.1 1.9 5.6 6.4 1.3 
Hargreaves-pp. 19.2 2.8 7.1 8.2 1.4 
Linacre 42.8 7.2 12.4 16.7 7.2 
Blaney-Criddle 12.3 1.5 4 5 1.9 
Kharrufa 31.6 3 9.7 14.4 4.8 
Priestley-Taylor 6.1 0.7 3 2.2 0.5 
FAO-Blaney-Criddle 29.7 3.8 9.4 12.8 4 
Turc 18.6 2.3 5.4 9.1 2.1 
Papadakis 37.3 3.6 8.9 19.7 5.2 
Radiation 13.4 1 4.1 6.4 2 

 747 

 748 

 749 
  750 
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Figure legends 751 

Figure 1: Relationship between monthly average daily sunshine duration (hours) and monthly 752 
average global radiation (W m–2), measured in seven stations in Spain (see Sanchez-Lorenzo et al., 753 
2007, 2013) between 1980 and 2010. 754 

Figure 2. Spatial distribution of the 46 meteorological stations used to calculate ET0 in Spain. The 755 
polygons represent the weighting of each station in calculation of the regional series for Spain. 756 

Figure 3: Box plot showing the annual and seasonal average ET0 corresponding to the 46 757 
meteorological stations used in the study. 758 

Figure 4: Annual average ET0 (mm) determined using the 12 equations for the 51 years of the study 759 
(1961–2011). 760 

Figure 5. Evolution of annual ET0 (mm) from the regional series for mainland Spain, determined 761 
using the 12 equations for the 51 years of the study (1961–2011).  762 

Figure 6. Evolution of seasonal ET0 from the regional series for mainland Spain, determined using 763 
the 12 equations for the 51 years of the study (1961–2011). 764 

Figure 7: Box plot showing the R2 coefficients between the annual and seasonal PM ET0 series and 765 
the series of the other 11 methods for the 46 meteorological stations for the 51 years of the study 766 
(1961–2011). 767 

Figure 8: Spatial distribution of the R2 coefficients between the annual and seasonal PM ET0 series 768 
and the series of the other 11 methods for the 46 meteorological stations for the 51 years of the 769 
study (1961–2011). 770 

Figure 9: Box plot showing the Willmott’s D statistics between the annual and seasonal PM ET0 771 
series and the series of the other 11 methods for the 46 meteorological stations for the 51 years of 772 
the study (1961–2011). 773 

Figure 10: Spatial distribution of the Willmott’s D statistic between the annual and seasonal PM 774 
ET0 series and the series of the other 11 methods for the 46 meteorological stations for the 51 years 775 
of the study (1961–2011). 776 

Figure 11. Box plot showing the annual and seasonal magnitude of change in ET0 using the 12 777 
methods for the 46 meteorological stations in Spain for the 51 years of the study (1961–2011). 778 

Figure 12: Spatial distribution of the annual magnitude of change in ET0 for the 46 meteorological 779 
stations in Spain for the 51 years of the study (1961–2011). The legend represents annual ET0 780 
changes (mm per decade–1). Figure 13 shows the spatial distribution of the magnitude of change in 781 
annual ET0 for the 46 meteorological stations. 782 

Figure 13: Relationship between the annual and seasonal magnitudes of change in ET0, derived 783 
using the PM method and the other 11 methods for the 46 meteorological stations for the 51 years 784 
of the study (1961–2011).  785 
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Figure 1 787 
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Figure 2 791 
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Figure 3.  795 
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Figure 4.  806 
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Figure 5.  809 
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Figure 6.  811 
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Figure 7. 814 
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Figure 8.  817 
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Figure 9. 819 
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Figure 10.  822 
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Figure 11. 825 
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Figure 12. 829 



42 
 

 830 

Figure 13. 831 
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