


For the calibration, it was decided to use a deterministic
approach with different machine learning (ML) methods;
that is, it was decided to calibrate each of the 20 members as
if they were a deterministic model, and 5 airports that
represented different climatic conditions of Spain were
chosen; these airports were Madrid-Adolfo Suárez-Barajas,
Barcelona-El Prat, Vigo-Peinador, Palma de Mallorca-Son
San Juan, andMálaga-Costa del Sol. Madrid has an airport in
the middle of the Iberian Peninsula, with a continental and
dry climate; two airports were close to the coast (Barcelona
and Palma de Mallorca): one of them (Palma de Mallorca) is
in an island with Mediterranean climate. 0e other two
airports are in the wet Atlantic facade of Spain (Vigo) and in
the hot land of Andalućıa in the South of Spain (Málaga).

It was decided to calibrate 3 variables that have a clear
impact for the sensitive weather in the surface: temperature,
wind speed, and precipitation in 24 hours. 0e sophistica-
tion of the calibration was roughly in the increasing order
from temperature to precipitation, due to the inherent
difficulties associated with such variables. As mentioned,
machine learning (ML) tools were used, a range of powerful
statistical methods that are growing in popularity due to
their success. A brief overview of ML methods is shown in
the next section.

Some efforts have been done in the past using ML as a
calibration tool. 0ere are new and promising results using
ML for instance for the nowcasting of precipitation [7] along
with older achievements like in [8–11]. 0is work is original
because the calibration has been done massively in an en-
semble with 20 members and because of the physical con-
siderations added to the approach to complement the ML
techniques.

2. Materials and Methods

Machine learning methods are a wide range of statistical
tools that allow extraction of meaning from data. Indeed,
statistics and machine learning can be synonyms. Both are
concerned with learning from data. Simplifying perhaps too
much, one could say that statistics puts an effort in formal
inference for low-dimensional problems while machine
learning deals with high-dimensional problems [12].0e key
point seems to be that, with the increase of computational
power, many problems previously considered intractable
can be at least partially solved. Some terms that denote the
same concept differ depending on whether the user comes
from an ML or a statistics background (for instance, esti-
mation in statistics and learning in ML). We will use in this
article the ML terminology.

Machine learning can be divided in 3 big paradigms:
reinforcement, supervised, and unsupervised learning. Re-
inforcement learning is applied when a system learns, while
it evolves interacting with an environment. 0e learning is
supervised or unsupervised depending on if there is a
function or a set of labels that guide the learning. In this
work, the supervised paradigm is used, with data (obser-
vations) that should be similar to the model. Inside the
supervised paradigm, there are classification or regression
problems depending on discrete or continuous variables,

respectively. As in this work variables are continuous, re-
gression is the technique used.

Among the many techniques present in the literature of
ML, these methods were chosen: ridge regression, lasso,
elastic net, Bayesian ridge, random forest regression, gra-
dient boosting, XGBoost, AdaBoost, polynomial regression,
singular vector regression (SVR), and feedforward neural
networks (FNNs) that are briefly described in the next
sections.

2.1. Ridge Regression, Lasso, Elastic Net, and Bayesian Ridge.
0ese methods are sophisticated versions of the classical
linear regression solved by Carl Gauss 200 years ago. 0ey
minimize a squared error function as in linear regression but
with the peculiarity of adding an extra term to prevent
overfitting. Overfitting is a word that will appear a lot in this
work. It means that a model has finished extracting the main
features from a dataset, and it is just memorizing that
dataset. In such case, all the ability to get a good performance
is lost when we apply the model to another, even similar,
dataset. A way to prevent overfitting is to limit the number of
free parameters in a model (see, for instance, John von
Neumann ironic comments on this [13]).

In the case of ridge, the penalty term (also known as a
regularization term) added to the square error is named L2.
0e error function for ridge is as follows:
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and βj are the coefficients), λ is the penalty coefficient, n is
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Lasso is very similar to ridge, but it uses a L1 penalty
term, i.e., the absolute value instead of a square term, that is,
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One of the main features of lasso is that it reduces the
number of predictors used in the regression to only those
that provide more information for the function to be closest
to the observations.

Elastic net is a combination of ridge and lasso at the same
time. Bayesian ridge assumes a Bayesian probability
thinking, assigning a Gaussian probability distribution for
the parameters of the model and then estimating them
during the regression; this results in an approach very
similar to ridge [14].

2.2. Random Forests and Boosting Techniques. Random
forest consists in the creation of an ensemble of decision trees
and in taking the mean of the values that those trees estimate.
A decision tree is a model similar to a flowchart consisting of
branches and nodes. Nodes are functions of the data, such as
mean squared error (MSE) or information-related metrics
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(Akaike information criterion, for instance). Branches are the
different outcomes of those operations performed in the
nodes. At the end of the tree, we have the leaves, that is, the
final outcome of the different operations. When working with
random forests, it is crucial to set the adequate deepness of the
trees, that is, the number of levels in the flowchart.

Boosting combines the random forest approach with the
minimization of an error function, like MSE. 0ey use the
gradient descent technique for such minimization. Knowing
that the gradient gives the direction of maximum growth of a
function, we can move in the opposite direction in order to
search for the minimum of such function:

wi+1 � wi − α∇g(w), (3)

where the parameter w is what we search, iteratively, g(w) is
the error function (for instance, the MSE), and α is the
learning rate, a constant that can be fine tuned. Gradient
descent admits lots of variants to improve its performance,
such as the momentum method, to diminish the oscillations
of the movement through the parameter space, or the option
to take the learning rate as a variable to optimize instead of a
constant. Examples of these techniques are the AdaBoost,
gradient boosting, and XGBoost (the last two differ mostly in
the implementation details).

From a broader perspective, random forest can be seen
as algorithms that reduce the variance of a model and the
boosting algorithms can be seen as a reduction of the bias of
models. Both techniques lead to a reduction of theMSE since
we know that

MSE � bias2 + variance. (4)

2.3. Singular Vector Regression and Neural Networks.
0ese are important on fashion techniques that have showed
considerable power when dealing with big and complex
datasets (especially the neural network). 0e details of their
implementation and their working are quite convoluted, and
here, only a very brief summary of their features is shown.
Interested readers can consult [14, 15].

SVR (singular vector regression) is a technique based on
going to higher dimensional spaces in order to convert a
nonlinear problem into a linear one. Working in higher
dimensional spaces has a cost, the so-called curse of di-
mensionality, but the clever use of some functions (kernels)
simplify and reduce most of the computations.

A feedforward neural network (FNN) is an artificial
imitation of a human brain, with hierarchical layers of
neurons that receive a set of inputs and compute nonlinear
functions or activations.0ese neurons depend on parameters
that can be learned using a technique inspired in the gradient
descent called backpropagation. Besides the parameters “in-
side” the neurons, there are many hyperparameters in neural
networks that also need to be tuned, like the number of layers,
the exact type of functions the neurons compute, or the al-
gorithm that performs the backpropagation. And of course,
like in any other ML method, it is necessary to fight against
overfitting. All this shows that, although they have consid-
erable power, neural networks can be very tricky to train.

3. Results and Discussion

3.1. Calibration for 2-Meter Temperature. 0e training
dataset was from November 14, 2016, to January 22, 2018,
roughly one year and two months. 0e observation of the 2-
meter temperature came from the METAR reports of the 5
airports. 0e 4 closest points to the coordinates of the ob-
servation stations were the points chosen, covering a grid
area of 2.5× 2.5 km2.0e reason of choosing these 4 points is
because not always the closest point provides the better
information and also because more information can be
gained by adding other points. In Figure 1, the example of
how much information is gained is shown with a method
that performs especially well, the ridge regression. 0e ex-
ample of Madrid airport is shown. 0e observation point is
at latitude 40.485 degrees and longitude −3.570 degrees. 0e
4 points are at roughly 0.712 km, 1.992 km, 2.137 km, and
2.833 km from the observation point. 0ese distances have
been calculated using the Vincenty distance that comes from
considering the Earth as an ellipsoid with the projection
WGS-84, as provided for instance in the geopy library for
Python. As it is possible to see in Figure 1, it is not the closest
point to the observation point the one with the best R2

coefficient. In this case, it is the second point, the one with
the best R2. It is possible to see in Figure 2 that, with 4 points,
the best R2 coefficient is obtained. Of course, more points
could still be added to the regression, and in fact, this was
done for the case of the precipitation, due to the spatial
uncertainty of this variable; however, for the temperature,
adding more points would mean losing the high resolution
of our model. It was thought that, with 4 closest neighbours,
there was a nice trade-off between resolution and extra
information.

In some airports, such as Madrid, the 4 closest points are
all land points, so no special measure need to be taken. But in
cases like Barcelona or Palma, some of the 4 closest
neighbours could be (and were) points over the sea. It is
known that the diurnal cycles of the temperature over the
ocean and over the land are different. A legitimate approach
could be to include the 4 points in the regression, without
considering if they are land or sea; the elimination of sys-
tematic errors (biases), like the differences in the temper-
ature between land and sea, is something that ML algorithms
are especially good at. However, it was decided that an extra
“help” could be provided to the algorithms filtering those
points over the sea. In the ML literature, this is called feature
engineering, and in some cases, it is essential for a good
result. So, the approach was to use a land-sea mask for the
member of the LAM-EPS AEMET-cSREPS ensemble to
perform the filtering. A function was implemented in the
Python code with the help of the ecCodes library from the
ECMWF to choose the 4 closest points. For every point, it
was checked if it was from the sea or from the land. Points
from the sea were discarded. An extra, special routine for the
(quite exceptional) case of the 4 closest points coming from
the sea was added; in such case, the routine would be
searching until a land point appeared and that would be the
chosen point. In the cases where some points were discarded
due to the fact that they were sea points, it was decided not to
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continue the search until completing the 4 points, in order to
not be too far from the observation (and therefore losing the
power of a high resolution model). A compromise solution
was to select only those points that were land points, even if
there was only one.

Data from the model from H+ 06 hours until
H+ 36 hours were used, each 3 hours (observations were
each thirty minutes as usual with METAR, but the model
steps were each 3 hours). We performed a quality control
over the model and over the observations deleting gross
outliers (the threshold was put in values bigger than ±80
degrees Celsius); for the model, this was the only control.
0is threshold seems strange, but the reasons for it are part
of the ML philosophy: to search a trade-off between the
ability to discard very bad forecasts from the model that
would spoil all the learning while, at the same time, being
able to penalize the model if it showed wrong values
(without spoiling the entire learning). Experience has shown
that observations need a quality control too. For the

observations, it was performed an extra, very draconian
quality control: for each observation at hour H, the average
of the temperature at H− 3 and H+ 3 was taken, and the
value at H was kept if the difference with respect to the
previously calculated average was below 5 degrees in the
absolute value. Perhaps valid values were deleted with this
procedure, but this method is robust to different types of
changes in the temperature, even to some abrupt changes,
and at least one can reasonably be sure that outliers were not
present in the observations.

After these quality controls (and other basic checks such
as deleting repeated values for the same hour), the 1 column
for the observations and the 4 columns for the forecasts were
confronted and prepared for the calibration or training with
the different ML methods. 0is joining and preparation of
the dataset was done using the very useful Pandas library
from the Python environment.

0e results of the training for the 5 airports chosen with
one of the members of the LAM-EPS AEMET-cSREPS en-
semble, member 019, are shown.0ere is no special reason to
choose this member although the results exemplify what
happens with a lot of the other members. 0e intention is to
show the results from temperature, wind, and precipitation
for members with completely different NWP models and
boundary conditions, so different members representing
different models and boundary conditions for each of the
three variables have been chosen. Member 019 is the WRF-
ARW model [16] with the boundary conditions from the
Japanese Global Model, GSM (http://www.jma.go.jp). In the
graphs, the MSE error is in the vertical bar and the different
ML methods used in the horizontal bar. 0e horizontal lines
are the MSE of the model without postprocessing: the green
line is the MSE of the closest point to the observation of the 4
closest points, and the red line is theMSE of the point with the
minimum MSE of the 4 original points. In many occasions,
these lines coincide because the points coincide. For each ML
method, the average performance and its standard deviation
have been calculated. 0is calculation has been done using
cross validation. In cross validation (CV), the dataset is di-
vided in N parts and N− 1 parts are used for the learning or
inference of the parameters of the model and an evaluation is
performed with the remaining part. 0is procedure is re-
peated until each one of the N parts has been the part of
evaluation. 0en, the average and the standard deviation are
calculated, and an honest evaluation of the model is obtained.
A CV with N� 10 parts was used except for the SVR, where
for computational optimization, only 5 parts were used. In
two of the models, the FNN and the SVR, a technique called
nested cross validation was used; this is basically 2 CVs, the
deepest one to find the best hyperparameters that define the
model and the other one for the performance of the model
with the selected hyperparameters.

0e graphs for the 5 selected airports for the member 019
are shown. 0e MSE is in the vertical axis and in the
horizontal the different ML methods. 0e average of the
performance for each method is shown, and its standard
deviation is calculated with cross validation. For eachMSE, it
represents the MSE plus the standard deviation as the top of
the bar and the MSE minus the standard deviation as the
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Figure 1: Quality of the ridge regression for different number of
points (temperature).
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Figure 2: Quality of the ridge regression for the 4 closest points
(temperature).
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lowest part of the bar, to give an idea of the range of var-
iability. As previously stated, the red line is the model output
without postprocessing for the minimum MSE of the 4
points. 0e green line is the MSE of the closest point to the
observation, so it is really the point (or the line) to use to
compare between the model and the ML methods. 0e
calibrations of the 5 airports are shown in Figures 3–7.

As an extra, a scatter plot between the point with the
minimumMSE and the observations is shown (Figure 8). In
an ideal model, all the points would be in a diagonal line at
45 degrees. A fit to a straight line and to a second-order
polynomial is performed, to provide intuition.

It is necessary to comment that the same weights and
biases have been used in the algorithms for all hours from
H+06 toH+36. A more rigorous approach would have been
to train an algorithm for each time, taking into account the
fact that the model degrades with the passing of time.
However, this wouldmean a severe stratification of the dataset
(a reduction of more than a tenth of our original dataset), and
these datasets are still small since LAM-EPS AEMET-cSREPS
has been running one year and a half in the moment of
writing this, and less time when the calculations were per-
formed. Besides, fromH+ 06 toH+36, the degradation of the
model is still small, and it is not strange to see in the daily
practice that, for instance, a forecast for H+ 12 is more ac-
curate than a forecast forH+09. In the end, it all turned to be
a practical decision: was the training good with this procedure
or not? As the graphs show, the answer is that the training was
good, so this approach was used. Perhaps in the future, with
bigger datasets, as the LAM-EPS AEMET-cSREPS accumu-
lates more data, such stratification could be done.

As it can be seen, the classical statistical and linear
methods perform very well.0e ridgemethod seems to stand
out. Comparing with the green line (the closest point to the
observation) it is possible to see there are improvements (in
some cases high, in some cases not so high). For the cases of
two airports (Vigo and Málaga), there is no clear im-
provement, but the ridge method in such case is similar to
the model performance, so there is no spoiling either.

3.2. Calibration for theWind speed. As with the temperature,
the dataset was from November 14, 2016, to January 22,
2018. 0e main ideas implemented for the case of the
temperature are also applied for the wind speed at 10meters.
However, some caveats need to be considered. First of all, as
the LAM-EPS AEMET-cSREPS works in the Lambert
conformal conic projection, the wind, a vector, needs to be
adequately rotated in order to be compared with the wind
from the observations, which it is in Cartesian coordinates.
Some people have suggested that the differences between the
Lambert conic conformal and the Cartesian coordinates, for
a limited area model like the LAM-EPS AEMET-cSREPS,
centred in the Iberian Peninsula, are very small and could be
overlooked. 0at is true, i.e., the angles between the Car-
tesian grid and the Lambert grid were very small (the biggest
angle was below 3 degrees). Besides, the ML methods are
especially good subtracting systematic errors, as previously
commented. However, the spirit of this work was to do as

much feature engineering as possible (in other words, to
reason as physically as possible), so the wind vectors were
rotated from Lambert to Cartesian.

0e wind components u and v were extracted, the ro-
tation carried on, and a dataframe with the pandas library
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Figure 3: T2m calibration plot for Madrid airport. Horizontal axis,
from left to right: ridge, lasso, elastic net, Bayesian ridge, random
forest regression, gradient boosting regression, XGBoost re-
gression, AdaBoost regression, polynomial of order 2, and feed-
forward neural network.
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Figure 4: T2m calibration plot for Barcelona airport. Horizontal
axis as in Figure 3.
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from Python was created, as in the case of the temperature.
0e time range was from H+ 06 to H+ 36 each 3 hours. An
stratification in the dataset (training an algorithm for each
time step) was not done for the same reasons that, for the
temperature, an stratified dataset would be a reduction of 1/
11 of the size of the dataset, the limit of 36 hours was a
relatively short limit for the degradation of the model, and,

on a practical level, the approach chosen showed good
results.

An important thing to comment is that the training was
done for the wind speed only, that is, the scalar value, not for
the wind vector with its magnitude and direction.0e reason
of this was purely a matter of choice. It was checked that
when training for the wind as a vector, part of the learning
went to learn the direction and part of the learning went to
learn the magnitude. It was decided that a wind vector whose
direction differs from the METAR in some degrees was not
very relevant, but that a difference in a couple of knots (or m/
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Figure 5: T2m calibration plot for Palma airport. Horizontal axis
as in Figure 3.
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Figure 6: T2m calibration plot for Vigo airport. Horizontal axis as
in Figure 3.
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Figure 7: T2m calibration plot for Málaga airport. Horizontal axis
as in Figure 3.
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s) is more substantial and more helpful to the forecasters. So
the modulus of the wind vector was calculated from the u
and v components and the training performed with the
magnitude of the wind.

It is also relevant to remark that the only quality control
performed over the observations and the model was a basic
quality control to delete the presence of gross outliers, in a
similar spirit to the case of the temperature, that is, balancing
out the necessity of avoiding gross outliers that would ruin
the learning while at the same time penalizing the model for
bad values. 0e threshold was put in 100m/s. Unlike what
happens with the temperature, it is quite difficult to perform
a quality control over the wind that does not discard nu-
merous valid measures. Also, unlike with the temperature, it
is unrealistic to expect a regular pattern in the evolution of
the wind that allows us to make valid comparisons between
the values some hours before and later.

0e 4 closest grid points to the observation point were
searched, and a multivariable regression was performed. Not
all the points were land points. For the case of the wind,
measured at 10meters, there is also a difference between land
and sea, but it was thought that this difference was not as
important as in the case of the temperature (with its strong
diurnal and nocturnal cycle for land points) and that other
factors were more important (type of terrain, for instance). As
in the case of the temperature, it is possible to see in the
example of Figure 9 that it is not the closest point the one who
provides the best information (as measured by the R2 co-
efficient). In this case, it is the farthest point. In the example of
Figure 10, it is shown that using 4 neighbours adds extra
quality to the regression, and this was the chosen procedure.
0e results are shown for the member 001, that is, the
HARMONIE-AROME NWP model [17] with the boundary
conditions of the ECMWF/IFS (http://www.ecmwf.int).

It is also shown the scatter plot (Figure 11) of the model
with minimum MSE versus the observation. 0e fit is not as
perfect as in the case of the temperature, as expected. Very
low-scale phenomena like small changes in the terrain,
buildings, or other obstacles can modify the wind measured
considerably. As these are systematic errors, it is expected for
the ML methods to deal very well with them.

For each MSE, the MSE plus the standard deviation is
represented as the top of the bar and the MSE minus the
standard deviation is represented as the lowest part of the
bar, to give an idea of the range of variability. 0e red line is
the model output without postprocessing for the minimum
MSE of the 4 points. 0e green line is the MSE of the closest
point to the observation, so it is really the point (or the line)
to use to do the comparison between the model and the ML
methods. As it is shown in the calibration graphs
(Figures 12–16) there is an improvement of the forecasted
wind speed with many ML methods. Like in the case of the
temperature, ridge seems to offer a great improvement while
being at the same time computationally acceptable for an
operational environment.

3.3. Calibration for the Precipitation. As for the cases of the
wind and the temperature, the same dataset was used, from

November 14, 2016, to January 22, 2018. Calibrating the
precipitation is a very subtle issue. It is thoroughly known
that precipitation does not follow a Gaussian distribution. It
is also known that when calibrating, the precipitation is
necessary to take into account that, besides the numerical
quantities, the structure of the precipitation is also impor-
tant.0at is why the approach followed was different. Unlike
with the cases of the wind and the temperature, the points
used were the 12 closest neighbour points of the model, not
the 4 closest ones. It was thought that, with this number of
points, the high spatial uncertainty that affects the pre-
cipitation was taken into account. With this number of
points, the features of a precipitation structure are collected
and that at the same time, there is not a renounce to the high
resolution properties of the LAM-EPS AEMET-cSREPS. Of
course, other choices were possible, but, as before in this
work, the approach chosen was the one that balanced out
computational efficiency with physical insights. In the end,
the structure under consideration was an irregular octagon
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Figure 9: Quality of the ridge regression for the 4 closest points
(wind speed).
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Figure 10: Quality of the ridge regression for different number of
points (wind speed).
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(8 points) plus the 4 points inside the octagon (Figure 17).
0e precipitation was calibrated for 24 hours, measured
from 06 to 06 UTC in the model but from 07 to 07 UTC in
the network of observations. Of course, it would be ideal to
have model from 07 to 07, but sadly this is not the case. In a
near future, the LAM-EPS AEMET-cSREPS will have out-
puts each hour, but, right now, with outputs every 3 hours,

the 1 hour lag between the model and the observation is an
unavoidable pitfall that there is no option but to assume.

0e temperature at 2meters and the u and v components
of the wind at 10meters were also added to improve the
calibration. For these variables, it was decided to use the
point closer to the observation, without distinguishing if the
point was land or sea; this was done because, on the one
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Figure 13: 10meters total wind calibration plot for Barcelona
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hand, there was a high confidence that the ML methods can
deal with systematic errors very well and, on the other hand,
because these variables were just a help to improve the
regression, they were extra information, not the desired
outcome. A check was done for the 3 possible combinations:
12 points of precipitation plus the closest point of the
temperature, 12 points of precipitation plus the closest point
of the u and v components of the wind, and 12 points of

precipitation plus both the closest points of temperature and
u and v components of the wind field. In the end, it was
decided to provide more variables for a better algorithm, and
the last option was chosen.

As in the case of the wind field, the quality control was to
discard gross outliers (if any) in both the model and the
observations. In the case of the observations, quality controls
are done before incorporating any data to the Spanish cli-
matological database. For the model and as in the case of the
wind speed, it is possible to discard only gross outliers that
are clear indication that something was wrong when
computing or storing the data; these are outliers due to
mechanical or operational issues, not related to the model
design and performance. Except for gross outliers, bad
values from the model were included and would be a pe-
nalization in the training. 0e level was put in
2000millimetres in 24 hours for the precipitation and in
100m/s in wind speed and ±80 degrees in temperature, as
before. As a safety check, rows which had negative values
were deleted: this can happen when transforming data (for
instance, in the Spanish climatological database, values are
stored as tenths of millimetres and for this work, they were
converted to millimetres); this phenomenon is called
underflow in the computer science literature.

When dealing with this type of regression, the possibility
of standardizing the dataset was considered. Standardization
is a procedure where for each independent x variable in the
regression equation (for each predictor), the mean is cal-
culated, x, and its standard deviation, σ, and then the op-
eration (xi −xi)/σi is carried out, where i runs through all
the samples in the dataset. A good point about standardi-
zation is that all the variables have the same relative
weight when doing the regression; this is very nice since in
this work there are variables that are in the scale 200–300
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Figure 15: 10meters total wind calibration plot for Vigo airport.
Horizontal axis as in Figure 12.
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(temperature), variables distributed around 0 (u and v

components of the wind field), and positive variables with a
great spectrum of variation (precipitation). Another good
point of the standardization is that some algorithms work in
the range of normally distributed values or with uniform
distributed values between 0 and 1. 0is is especially true in
the case of the FNN (feedforward neural network). In the
cases of the wind and the temperature, reasonably good
results were achieved without the necessity of standardi-
zation, and some experiments with standardization changed
the performance of the algorithms but not the substantial
results, so it was decided not to use standardization for the
wind and the temperature.

In the graphs, for each MSE, the MSE plus the standard
deviation is represented as the top of the bar and the MSE
minus the standard deviation is represented as the lowest part
of the bar, to give an idea of the range of variability. 0e red
line is the model output without postprocessing for the
minimumMSE of the 12 points. 0e green line is the MSE of
the closest point to the observation, so it is really the point (or
the line) that should be used to do the comparison between
the model and the MLmethods.0e results are shown for the
precipitation without standardization (Figures 18–22) and
with standardization (Figures 23–27) for member mbr010.
Mbr010 is the Harmonie-ALARO NWP model with the
boundary conditions from the ARPÈGE model [18] by
Météo-France (http://www.meteofrance.fr).

Note that sometimes the blue bars that denote the
standard deviation have negative values. Of course, this does
not mean that the MSE is a negative magnitude. It is simply a
reflection of the fact that the cross-validation technique has
showed a wide variability of our MSE. 0e MSE varies a lot
depending on what slice is the validation set and what slices
are the training set. Blue bars are by definition symmetric
around the average of the MSE, that is, the top of a bar is the
average of the MSE plus the standard deviation and the
lowest part of a bar is the MSEminus the standard deviation.
So, bars in the negative values are really MSEs with a great
positive value.

As it is possible to see, precipitation is a very subtle
variable to calibrate. For the case of the precipitation, each
point has its peculiarities in an even stronger way than with
the wind speed or the temperature. What it is possible to say
is that standardization helps (however, perhaps not always).
For the precipitation, the most sophisticated methods such
as singular vector regression and neural networks begin to
show their strength although still reasonable results are
achieved with ridge.

4. Conclusions

As it has been shown, ML methods are a great tool for the
calibration of meteorological models. Classical linear re-
gression, with the added help of regularization, works very
well for the temperature and the wind speed. In the case of
the precipitation, there is no preferred method and things
seem to depend on the point and on the nature of the dataset,
something that is not surprising, because it is known that
there is not a universally valid ML method, valid for all the

datasets [19]. For the precipitation, standardization of the
dataset can be helpful, and with respect to the methods,
neural networks offer a good alternative although other
methods such as lasso, elastic net, or ridge have perfor-
mances that could be close to those of neural networks but
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Figure 18: Precipitation in 24 hours, calibration plot for Madrid
airport. Horizontal axis, from left to right: ridge, lasso, elastic net,
singular vector regression, Bayesian ridge, random forest re-
gression, gradient boosting regression, XGBoost regression, Ada-
Boost regression, and feedforward neural network.
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Figure 19: Precipitation in 24 hours, calibration plot for Barcelona
airport. Horizontal axis as in Figure 18.
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offering considerable easier training. In an operational en-
vironment, for each member of the ensemble and for each
point, a training will have to be performed and, after cross
validation, the best method will be chosen. 0e methods
mentioned (ridge, FNN, etc.) do not have to be always valid,
and each dataset has its own method. We can make guesses
about what method will be the best based on physical and

statistical considerations, but in the end, only once the
calibration is applied can we decide.

It is legitimate to ask oneself what these ML methods are
really doing (at least, what they are probably doing since
there are still open questions about howMLmethods work).
It is important to differentiate between wind speed and
temperature on the one side and precipitation on the other
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Figure 20: Precipitation in 24 hours, calibration plot for Palma
airport. Horizontal axis as in Figure 18.
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Figure 21: Precipitation in 24 hours, calibration plot for Vigo
airport. Horizontal axis as in Figure 18.
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Figure 22: Precipitation in 24 hours, calibration plot for Málaga
airport. Horizontal axis as in Figure 18.
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Figure 23: Precipitation in 24 hours, standardized calibration plot
for Madrid airport. Horizontal axis as in Figure 18.
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side. For the wind speed and the temperature, ML methods
are probably correcting the biases (systematic errors) that
the models have for typical patterns of synoptic situations
(and probably even for mesoscale situations). For the case of
the precipitation, the errors have many different origins, due
to not only biases and systematic errors but also due to all the
approximations taken into account to model the pre-
cipitation, like the cloud microphysics scheme used or the

parametrization of the onset of convection; in this case, ML
methods are managing greater complexity and uncertainty.

Why do some methods perform better than others? In
most of the occasions, when doing ML, it is hardly known
a priori which method will be the right one. It is proof and
error what finally determines what method has the best
performance. However, and from purely physical con-
siderations, for the wind speed and the temperature, the
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Figure 24: Precipitation in 24 hours, standardized calibration plot
for Barcelona airport. Horizontal axis as in Figure 18.
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Figure 25: Precipitation in 24 hours, standardized calibration plot
for Palma airport. Horizontal axis as in Figure 18.
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Figure 26: Precipitation in 24 hours, standardized calibration plot
for Vigo airport. Horizontal axis as in Figure 18.
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Figure 27: Precipitation in 24 hours, standardized calibration plot
for Málaga airport. Horizontal axis as in Figure 18.
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success of relatively simple methods like ridge, elastic net,
lasso, or Bayesian ridge, which are basically extensions of a
linear regression, is probably linked to the facts mentioned in
the previous paragraph: the correction of mainly systematic
errors due to relatively few and controlled sources of error for
these variables. In the case of the precipitation, with all the
uncertainties and complexities involved, more sophisticated
methods like the FNN, that are capable of discerning more
subtle signals in the data, begin to give better results. FNN and
the rest of sophisticated methods are harder to train, with a
tendency to overfit among other subtleties; these methods are
not geared to relatively better determined problems like the
forecast of the wind speed or the temperature.

It is important to remark that the calibration goes well
when the ML methods deal with values that are in the
range of the minimum or maximum values in the dataset,
in other words, values that are in the range of what the
algorithm has “seen.” When a calibrated algorithm faces a
value that is outside the trained range, anything can
happen. Depending on their nature, some algorithms will
perform a linear extrapolation and others could fit the
value to some complex, high-order polynomial curve. To
avoid this behaviour, it is possible to establish a flag or
similar warning advice to deactivate the algorithm for such
a value, letting the direct (uncalibrated) output of the
model to be the definitive value. At least the extreme value
is incorporated to the dataset and it will be part of a future
training process.

With respect to the calibration with ML, there are
many lines of research that can be explored in the future. It
is possible to dive deeper in the realm of ML methods,
searching for instance how deep learning (neural networks
with many layers) performs: an interesting method could
be the recurrent neural network, for example, perhaps
deep learning could serve to improve the results of the
precipitation. It is possible to think in extending these
calibration methods from points to surfaces, following
some kinds of classification in function of the type of
terrain, weather, or climate. Or one could use algorithms
that offer probabilistic outputs (FNN, for instance) to
calibrate the ensemble directly instead of member by
member. 0ere is no doubt that this is an interesting topic
to delve in.
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