

DEPARTMENT OF ATMOSPHERIC PHYSICS CHARLES UNIVERSITY

CONVECTIVE STORM NOWCASTING CAPABILITIES OF REMOTE SENSING IN CENTRAL EUROPE

Michaela Valachová, Patrik Benáček, Hana Kyznarová

3rd European Nowcasting Conference

Madrid, Spain, 25 April 2019

Central Forecasting Office, Prague michaela.valachova@chmi.cz

POSSIBLE UTILIZATION

 electrification, dynamics and microphysics connected → changes visible in all remote sensing data → NOWCASTING

RADARS

microphysical properties and dynamics

Polarimetric Doppler radars (upgrade in 2015)

- C band ($\lambda \sim 5$ cm), 12 elevations
- resolution 1×1 km (whole domain)
- many useful applications:
 - CELLTRACK, COTREC
 - CELDN strokes
 - PrecipView, WarnView

100

200 km

RADARS - CELLTRACK

- reflectivity cores tracking algorithm
- developed in CHMI (Hana Kyznarová)

For the presented study:

- no tracking, just identification of cores
- characteristics of cells:
 - \circ threshold of 44 \rightarrow 30 dBZ (isolated storms)
 - o parameters:
 - AREA, VOL, VOL44, MAX_R, TOP
 - VIL, POH, SHI, POSH, MESH

Kyznarová H., Novák P. (2009): CELLTRACK – Convective cell tracking algorithm and its use for deriving lifecycle characteristics, Atmospheric Research, vol. 93

Operational output of CELLTRACK (JSMeteoView)

LIGHTNING DETECTION

CELDN (Central European Lightning Detection Network)

- o part of EUCLID, operated by Siemens AG
- $\,\circ\,\,$ operatively used in CHMI until 30 Sep 2017

LIGHTNING DETECTION

• microphysical properties, strength of updraft

every stroke: type (CC, CG) and polarity, time [ms], location (LAT and LON), stroke peak current estimation [kA]

- detection efficiency: 85 % or higher for CG
- location accuracy: better than 500 m
- estimate of peak current: error ~ tens of %
- no stroke clustering into flashes

LIGHTNING JUMP

- lightning jump algorithm
 - threshold for activation: 10 strokes per 5 min (median for non-severe storms)
 - \circ difference is higher than 2 σ of previous 15 min (Schultz et al., 2009)
 - \circ normalized difference between the amount of strokes = value of LJ

SATELLITES

- microphysical properties and dynamics
- MSG/SEVIRI 5 min RSS or 15 min data
 - resolution 3×6 km (1×2 km in HRV)
 - o individual channels:

» IR 10.8 and IR-BT, IR 3.9 and HRV

• RGB products

» Storm, VIS-IR, Snow

sandwich products

ISOLATED STORM SELECTION

- at least 5 strokes over the Czech republic
- CELLTRACK algorithm (30 dBZ threshold)
- remote sensing data available

SEVERE WEATHER REPORTS

3 2011-08-09 08-45.1

ww.eswd.eu (c) ESSL

reports from ESWD operated by ESSL

- quality control: QC0+, QC1, QC2
- $\,\circ\,$ time uncertainty up to 15 min
- o only "positive events"

Selected data from the database			
selected: all reports - occurring between 27-05-2016 00:00:00 and 27-05-2016 24:00:00 GMT/UTC number of selected reports: 172 Only the first 25 selected events are shown in the table Dynamic map Static Map Selected reports: Selected vectors are shown in the table	large hail	Heršpice Jihomoravský kraj Czech Republic (49.12 N, 16.91 E) 27-05-2016 (Friday) 18:30 UTC (+/-5 min.)	based on: information from : photo or video large amount of hailstones up to 2 cm in dia http://prostor.amsos.cz/eswd/hail/photo/201 http://prostor.amsos.cz/eswd/hail/photo/201 report status; event fully verified (QC2)
	heavy rain to map	Hodějice South Moravian Region Czech Republic (49.14 N, 16.91 E) 27-05-2016 (Friday) 18:30 UTC (+/- 5 min.)	Contact: Iomas Prouza (AMS) (e-mail) based on: information from: a report on a w precipitation: 70 mm Unofficial measurement; flooded buldings { http://www.krajskelisty.cz/ilhomoravsky-kraj/okres-brno-mesto/13275-hodelice-zasahla-bleskova-povoden-heitman-bodekoval-vsem-za-braci.htm report status: report confirmed (QC1) contact: Tomsu Radek (CHIN) (e-mail)
And and a second	heavy rain <u>to map</u>	Slavkov u Brna Jihomoravský kraj Czech Republic (49.15 N, 16.88 E) 27-05-2016 (Friday) 18:25 UTC (+/- 15 min.)	based on: information from : photo or video of the event, an eye-witness report convective. damage to property: cellars & streets flooded after forrential rain during supercell storm few cellars and streets were flooded time based on radar <u>https://www.facebook.com/ohoto.php?tbid=1210563088988641&set=p.1210563088988641&type=3&permPage=1</u> report status: event fully verified (QC2) contact: Tomáš Prouza (AMS) [e-mail]
vision vi	severe wind to map	Chernyakhovsk Kaliningradskaya oblasť Russian Federation (54.63 N, 21.81 E) 27-05-2016 (Friday) 18:00 UTC (+/- 30 min.)	based on: information from : an eye-witness report, photograph(s) and/or video footage of the inflicted damage, a report on a website, an eyewitness report of the damage damage to property: road blocked. telegraph line downed damage to crops and forests: tree downed source: AemoKny6 39RUS Kanuunepa0, 27 MAY 2016; pers.comm. Igor Azhigov, 27 MAY 2016; <u>https://po.vk.me/c6383171/v6383171/v6383171/0/353/Apv/DithmyBLipg</u> report status: report confirmed (QC1) contact: Thilo Kühne (ESWD management) [e-mail]
International de lange tail e securité	large hail <u>to map</u>	Krün Mitterwald com. area. Bayern Germany (47.50 N, 11.28 E) ≺ 3 km 27-05-2016 (Friday) 17:50 UTC (+/-5 min.)	based on: information from : photo or video of the event, an eye-witness report, a report on a website maximum hall diameter: 4 cm hallstorm: large hall up to 3-4cm i.d.; source: witness photo report; reported v. Instagram, 27 MAY 2016; RAD; <u>https://scontent.cdninstagram.com/b1.2885-15/s640x640/sh0.08/e35/13256896_1703417613251392_2118641648_n.jpg?ig_ceche_key=MTI1OTU5NTAxNzM4NzQ0MjAwMA%3D%3D.2 report status: report confirmed (QC1) contact: Thilo Kühne (ESWD management) [e-mail]</u>
If heavy anoundation services and the service of the service	large hail to map	Mittenwald Bayern Germany (47.48 N, 11.26 E) 27-05-2016 (Friday) 17:50 UTC (+/-5 min.)	based on: information from : photo or video of the event, an eye-witness report, a report on a website maximum hall diameter: 2 cm hallsform; large hall up to 2cm i.d.; source: witness photo report; reported v. Instagram, 27 MAY 2016; https://scontent.cdninstagram.com/151.2885-15/s640x640/sh0.08/e35/13183363_792157474217511_1429406503_n.jpg?ig_cache_key=MTI1OTU3MDI3NJY2NTQ3ODIwNw%3D%3D.2 report status: report confirmed (0C1) contact: Thilo Kühne (ESWD management) [e-mail]

SEVERE OR NON-SEVERE ?

THE WEATHER REPORT.

marth

Time evolution of all strokes on 2017-07-22 from 14:20 UTC (CZ-Luhaco

Time evolution of all strokes on 2017-07-08 from 08:17 UTC (CZ-Opav

Stroke type distribution on 2017-07-08 from 08:17 UTC (CZ-Opava)

Stroke type distribution on 2017-07-22 from 14:20 UTC (CZ-Luhacovic

EchoTOPs of (CZ-Luhacovice) on 2017-07-22 by CELLTRACK

Height [km]

EchoTOPs of (CZ-Opava) on 2017-07-08

Storm POSH, POH, MEHS and VIL on 2017-07-22 by CELLTRACK (CZ-Luhacovice)

Storm POSH, POH, MEHS and VIL on 2017-07-08 by CELLTRACK (CZ-Opava)

11:25

maxPOSH meanPOSH

maxPOH

meanPOH

maxVIL

meanVIL

maxMEHS

_ _ _ _

11:05

10:45

10:05

10:25

_ _ _ _

Time [UTC]

STORM DATABASE

72 storm cases from April to September 2016 and 2017

- \circ 24 severe, 48 non-severe storms
- 19 supercells, 19 multicells, 34 single cells

SATELLITES

- minimum BT in IR 10.8
- cooling rate: in 5, 15 and 30 min
- cloud-top features:
 OTs, cold-U or cold ring shapes, plume, small ice particles

Maximum height of echotop 4 dBZ [km]

Maximum reflectivity of radar core [dBZ]

n = 2536

REGRESSION

- machine learning classifiers
- probability of the storm severity

When?

→ three time intervals30, 60 and 90 minutes

LOGISTIC REGRESSION MODEL

 explain relationships between one dependent dichotomous variable (0 or 1) and one or more independent variables →

> odds of the storm being severe based on predictors from remote sensing measurements

- probability of the storm being severe
- conditions:
 - no high correlations among the predictors !!!
 - $\,\circ\,\,$ about 1 predictor per 10 cases to make model converge

VARIABLE SELECTION

multicollinearity

- detected based on Variance Inflation Factor (VIF)
- \circ pre-selection of predictors based on:
 - scientific knowledge
 - VIF < 4

VARIABLE SELECTION

• sign OK

- remove predictors, if its multivariable (MVA) sign is different from univariable (UVA) sign
- o repeat, until all selected predictors have a correct sign

-			
		UVA	MVA
	RAD.AREA	0.0134	0.0138
-	RAD.MAX_R	0.0991	-0.0464
-	RAD.MAX_R_CAPPI_AREA	0.3579	-0.1183
-	RAD.MAX_R_height	0.0004	0.0002
-	RAD.MAX_R_CAPPI_VOL	0.0677	0.0199
-	RAD.maxSHI	0.0088	-0.0029
-	RAD.TOP	0.0004	0.0004
-	RAD.VOL44	0.0043	-0.0030

VARIABLE SELECTION

stepwise backward method

- o remove the most insignificant predictors (p-value > 0.157) and reestimate
- $\circ~$ repeat until all predictors are significant

```
## Coefficients:
                      Estimate Std. Error z value Pr(>|z|)
辞耕
  (Intercept) -5.3353710 1.5954852 -3.344 0.000826 ***
## RAD.AREA 0.0090681 0.0038440 2.359 0.018324 *
## RAD.MAX_R_height 0.0001049 0.0002060 0.509 0.610690
## RAD.MAX_R_CAPPI_VOL 0.0321039 0.0498861 0.644 0.519871
## RAD.TOP
              0.0001863 0.0001286 1.449 0.147423
   ____
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '
群群
  Coefficients:
詳詳
                Estimate Std. Error z value Pr(>|z|)
  (Intercept) -4.9580578 1.5187031 -3.265
##
                                            0.0011 **
## RAD.AREA
               0.0096687 0.0039140
                                     2.470
                                             0.0135 *
## RAD.TOP
               0.0001957 0.0001260
                                      1.553
                                              0.1203
業井 -
  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Signif. codes:
```

LOGISTIC REGRESSION MODEL

- individual model for:
 - remote sensing methods (RAD, LSD and SAT)
 - \circ the first 30, 60 and 90 minutes of the storm lifecycle

	Dependent variable:		
	sev.phenomena		
	RAD30	RAD60	RAD90
	(1)	(2)	(3)
RAD.AREA	1.010	1.007	1.007
	$p = 0.014^{**}$	$p = 0.001^{***}$	$p = 0.0005^{***}$
RAD.TOP	1.000	_	_
	p = 0.121		
RAD.maxHP	_	1.037	
		$p = 0.010^{***}$	
RAD.MAX_R_height		-	1.001
			$p = 0.007^{***}$
Observations	72	72	72
Log Likelihood	-33.145	-29.612	-28.251
Akaike Inf. Crit.	72.291	65.225	62.501
Note:		*p<0.1; **p<	(0.05; ***p<0.01

2

	Dependent variable:		
	LSD30	LSD90	
	(1)	(2)	(3)
LSD.sum_curr_3		1.004 p = 0.090*	
LSD.LJ	2.105 n = 0.007***	p = 0.000 1.463 $p = 0.010^{**}$	
LSD.nstroke_3	p = 0.001	p = 0.015	1.035
LSD.sum_curr_0_neg			$p = 0.001^{***}$ 0.996 $p = 0.043^{**}$
Observations	72	72	72
Log Likelihood	-38.568	-36.036	-30.952
Akaike Inf. Crit.	81.136	78.073	67.905
Note:	*p<0.1; **p<0.05; ***p<0.01		

	Dependent variable:			
	sev.phenomena SAT30 SAT60 SAT90			
	(1)	(2)	(3)	
SAT.BT	0.894 p = 0.0005***	0.820 p = 0.002^{***}	0.773 p = 0.002^{***}	
Observations	63	63	63	
Log Likelihood	-29.744	-27.657	-25.068	
Akaike Inf. Crit.	63.487	59.314	54.136	
Note:		*p<0.1; **p<0).05; ***p<0.01	

ELASTIC NET

- a penalized regression technique
 - number of features (k=81/69) exceeds the number of observations (n=63)
 - presence of highly correlated predictors
- two penalty terms (α , λ) in the maximum likelihood formula:
 - o objective selection of relevant predictors
 - \circ shrink regression coefficients to reduce the model over-fitting
- cv.glmnet in R tests the performance of each λ by using the cross validation
 - \circ small size of dataset \rightarrow Leave-One-Out Cross Validation method (LOOCV)

Table 1: Elastic model coefficients for 30 min

Predictors	Coefficient	Odd_ratio			
(Intercept) RAD.AREA	Table 2: Elastic	c model coefficients for 60	min		
$LSD.sum_curr_0_pos$	Predictors	Coefficient Odd_rat	io		
LSD.LJ SAT.BT H	(Intercept) RAD.AREA LSD.LJ SAT.BT	Table 3: Elastic model coefficients for 90 min			
		Predictors	Coefficient	Odd_ratio	
		(Intercept)	5.537	253.937	
		RAD.AREA	0.002	1.002	
		$RAD.MAX_R_height$	0	1	
		$LSD.nstroke_3$	0.001	1.001	
		LSD.sum_curr_0_neg	-0.001	0.999	
		SAT.BT	-0.035	0.966	

EVALUATION OF MODELS

• Recall, Precision and F1 Score by LOOCV

https://towardsdatascience.com/accuracy-precision-recall-or-f1-331fb37c5cb9

	Recall $[\%]$	Precision $[\%]$	F1 Score
LRM-RAD	64	78	0.70
LRM-LSD	36	89	0.52
LRM-SAT	68	62	0.65
ENet	75	94	0.83

Performance of the models for the first 30 minutes of the storm lifecycle

SUMMARY

- most of studied remote sensing parameters are dependent on the storm severity → useful information for nowcasting
- regression models were employed
 - high precision of the models (over 70 %)
 - \circ $\,$ similar predictors for logistic regressions and elastic nets
- predictors of the storm severity:
 - o SAT.BT, RAD.AREA, LSD.LJ
- future steps:
 - o improve the LJ algorithm, find relations for new data sources
 - \circ $\,$ adaptations for the operation in CHMI $\,$
 - $\circ~$ probability of the storm severity, thresholds

ACKNOWLEDGEMENT

Support, motivation, inspiration:

Katrin Wapler (DWD) André Simon (OMSZ) Justin Sieglaff (CIMSS UW) John Cintineo (CIMSS UW) David Rýva (CHMI) Marian Rybář (MATSTAT)

Data source:

CHMI, EUMETSAT, Siemens AG ESSL and all active spotters

REFERENCES

Wapler K. (2017): The life-cycle of hailstorms: Lightning, radar reflectivity and rotation characteristics, Atmospheric Research, vol. 193

Bedka K., Wang C., Rogers R. et al. (2015): Examining Deep Convective Cloud Evolution Using Total Lightning, WSR-88D, and GOES-14 Super Rapid Scan Datasets. Weather and Forecasting, vol. 30

Cintineo J. L., Pavolonis M., Sieglaff J. et al. (2014): An Empirical Model for Assessing the Severe Weather Potential of Developing Convection, Weather and Forecasting, vol. 29

Sieglaff J. M., Hartug D. C., Feltz W. F. et al. (2013): A satellite-based convective cloud object tracking and multipurpose data fusion tool with application to developing convection, Journal of Atmospheric and Oceanic Technology, vol. 30

Dworak R., Bedka K., Brunner J., Feltz W. (2012): Comparison between GOES-12 Overshooting-Top Detections, WSR-88D Radar Reflectivity, and Severe Storm Reports. Weather and Forecasting, vol. 27

Novák P., Kyznarová H. (2011): Climatology of lightning in the Czech Republic. Atmospheric Research, vol. 100

Schultz C. J., Petersen W., Carey L. (2011): Lightning and Severe Weather: Comparison between Total and Cloud-to-Ground Lightning Trends. Weather and Foresting, vol. 26

Makalic E., Schmidt D. F. (2010): Review of modern logistic regression methods with application to small and medium sample size problems. In: Australasian Joint Conference on Artificial Intelligence. Springer, Berlin, Heidelberg, p. 213-222

Kyznarová H., Novák P. (2009): CELLTRACK - Convective cell tracking algorithm and its use for deriving lifecycle characteristics. Atmospheric Research, vol. 93

Schultz C. J., Petersen W. A., Carey L. D. (2009): Preliminary Development and Evaluation of Lightning Jump Algorithms for the Real-Time Detection of Severe Weather. J. of Applied Meteorology and Climatology, 48(12), p. 2543–2563

