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• electrification, dynamics and microphysics connected → 
changes visible in all remote sensing data → NOWCASTING

POSSIBLE UTILIZATION



REMOTE SENSING



• microphysical properties and dynamics

Polarimetric Doppler radars (upgrade in 2015)

• C band (λ ~ 5 cm), 12 elevations

• resolution 1×1 km (whole domain)

• many useful applications:

o CELLTRACK, COTREC

o CELDN strokes

o PrecipView, WarnView

RADARS



RADARS - CELLTRACK

• reflectivity cores tracking algorithm

• developed in CHMI (Hana Kyznarová)

For the presented study:

• no tracking, just identification of cores

• characteristics of cells:

o threshold of 44 → 30 dBZ (isolated storms)

o parameters: 
• AREA, VOL, VOL44, MAX_R, TOP

• VIL, POH, SHI, POSH, MESH
Operational output of CELLTRACK 

(JSMeteoView)Kyznarová H., Novák P. (2009): CELLTRACK – Convective cell tracking algorithm

and its use for deriving lifecycle characteristics, Atmospheric Research, vol. 93



CELDN (Central European Lightning Detection Network)

o part of EUCLID, operated by Siemens AG

o operatively used in CHMI until 30 Sep 2017 

LIGHTNING DETECTION



• microphysical properties, strength of updraft

every stroke: type (CC, CG) and polarity, time [ms], location (LAT and LON), 
stroke peak current estimation [kA]

• detection efficiency: 85 % or higher for CG

• location accuracy: better than 500 m

• estimate of peak current: error ~ tens of %

• no stroke clustering into flashes

LIGHTNING DETECTION



• lightning jump algorithm
o threshold for activation: 10 strokes per 5 min (median for non-severe storms)

o difference is higher than 2σ of previous 15 min (Schultz et al., 2009)

o normalized difference between the amount of strokes = value of LJ

LIGHTNING JUMP



• microphysical properties and 
dynamics

• MSG/SEVIRI 5 min RSS or 15 min data
o resolution 3×6 km (1×2 km in HRV)

o individual channels:
» IR 10.8 and IR-BT, IR 3.9 and HRV

o RGB products
» Storm, VIS-IR, Snow

o sandwich products

SATELLITES



• at least 5 strokes over the Czech republic

• CELLTRACK algorithm (30 dBZ threshold)

• remote sensing data available

ISOLATED STORM SELECTION



• reports from ESWD operated by ESSL
o quality control: QC0+, QC1, QC2

o time uncertainty up to 15 min

o only “positive events”

SEVERE WEATHER REPORTS



SEVERE OR NON-SEVERE ?

















STORM DATABASE







STORM DATABASE

72 storm cases from April to September 2016 and 2017
o 24 severe, 48 non-severe storms

o 19 supercells, 19 multicells, 34 single cells



• minimum BT in IR 10.8

• cooling rate:

in 5, 15 and 30 min

• cloud-top features:

OTs, cold-U or cold ring 
shapes, plume, small ice 
particles

SATELLITES















n = 2536



REGRESSION MODELS



• machine learning 
classifiers

• probability of the storm 
severity

When?

→ three time intervals 

30, 60 and 90 minutes

REGRESSION



• explain relationships between one dependent 
dichotomous variable (0 or 1) and one or more 
independent variables →

odds of the storm being severe based on 

predictors from remote sensing measurements

• probability of the storm being severe

• conditions:
o no high correlations among the predictors !!!

o about 1 predictor per 10 cases to make model converge

LOGISTIC REGRESSION MODEL



• multicollinearity
o detected based on Variance Inflation Factor (VIF)

o pre-selection of predictors based on:
• scientific knowledge

• VIF < 4 

VARIABLE SELECTION



• sign OK
o remove predictors, if its multivariable (MVA) sign is different from    

univariable (UVA) sign

o repeat, until all selected predictors have a correct sign

VARIABLE SELECTION



• stepwise backward method
o remove the most insignificant predictors (p-value > 0.157) and reestimate

o repeat until all predictors are significant

VARIABLE SELECTION



• individual model for:
o remote sensing methods (RAD, LSD and SAT)

o the first 30, 60 and 90 minutes of the storm lifecycle

LOGISTIC REGRESSION MODEL



RESULTS OF MODELS



RESULTS OF MODELS



RESULTS OF MODELS



• a penalized regression technique
o number of features (k=81/69) exceeds the number of observations (n=63)

o presence of highly correlated predictors

• two penalty terms (α, λ) in the maximum likelihood formula:
o objective selection of relevant predictors

o shrink regression coefficients to reduce the model over-fitting

• cv.glmnet in R tests the performance of each λ by using the 
cross validation

o small size of dataset → Leave-One-Out Cross Validation method (LOOCV)

ELASTIC NET



RESULTS OF MODELS



• Recall, Precision and F1 Score by LOOCV

EVALUATION OF MODELS

Performance of the models for the first 30 minutes of the storm lifecycle

https://towardsdatascience.com/accuracy-precision-recall-or-f1-331fb37c5cb9

https://towardsdatascience.com/accuracy-precision-recall-or-f1-331fb37c5cb9


• most of studied remote sensing parameters are dependent on the storm 
severity → useful information for nowcasting

• regression models were employed
o high precision of the models (over 70 %)

o similar predictors for logistic regressions and elastic nets

• predictors of the storm severity:
o SAT.BT, RAD.AREA, LSD.LJ

• future steps: 
o improve the LJ algorithm, find relations for new data sources

o adaptations for the operation in CHMI 

o probability of the storm severity, thresholds

SUMMARY

© NASA, Malaysia in 2009 from ISS
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