Aviation operational nowcasting systems

T. Bazlova, N. Bocharnikov, A. Solonin Institute of Radar Meteorology – IRAM

ENC2019, Madrid

Background

- The main objective of aviation nowcasting is to increase the accuracy of high impact weather forecast that facilitate decision-making aimed at improving aerodrome capacity, efficiency and safety.
- ICAO Global Aviation Navigation Plan (GANP) 2016-2030: Aviation System Block Upgrade (ASBU); Key concepts emphasize the importance of **nowcasting**:
 - **TBO -** Trajectory-Based Operations: 4D trajectories, seamless, gate-to-gate, the most accurate trajectory, **nowcasting** in initial and final phases
 - MSTA Met Services to ATM for airport terminal area The area mostly needs nowcasting. The closer to the area, the fine weather information is required (spatial res ~ 100 m, temporal res ~ minutes, update frequency ~ minutes)
- Nowcasting is applicable at airports with heavy traffic (> 1000 take-off & landing operations) and/or many high impact weather events.

AvRDP (WMO Aviation Research and Development Project) aims

- To demonstrate the capability of nowcasting in support of the development of the next generation aviation initiative, the ASBU under the ICAO GANP
- To translate the MET information into ATM impact products so as to demonstrate the benefits of the nowcasting to the aviation community

Participants: 11 international airports incl. Saint-Petersburg (Pulkovo).

Nowcasting systems of IRAM

- Nowcasting systems MeteoTrassa and MeteoExpert have been developed and implemented with the aim to give information support to aviation forecasters, aerodrome maintenance service and decision-makers.
- Particular emphasis is placed on the forecasts of adverse weather conditions, relevant for **landing and takeoff**, inclusive ascent and descent, and useful for **optimization of AMAN/DMAN** procedures.
- A methodology is based on **local observations**, an adaptive **assimilation** scheme, and **numerical ABL model**.
- Available data sources are used incl. aviation weather observation station (AWOS), high frequency observing additional automatic weather station (AWS), Doppler weather radar, AMDAR, runway weather station (RWS).
- A radar–based algorithm has been developed to **nowcast precipitation** at res of 1 km in space and 10 min in time. A combination of a cross correlation tracking method, averaged Doppler velocity, and prognostic wind (at 700 hPa) is employed.

Model

- The 1D ABL model represents the evolution of vertical profiles in the lower atmosphere.
- The momentum, water conservation and thermodynamic equations in terms of wind components, specific humidity, and potential temperature are written in the standard form.
- The k-ε turbulence closure scheme is used which is based on the prognostic equations for TKE and EDR.
- The surface temperature is modeled with a force-restore equation, where the soil flux at the surface is given by the surface energy balance.
- The upper BC is set in accordance with GRIB-coded data from NWP model.
- Initialization: measurement data + Monin-Obukhov similarity theory, AMDAR data.
- The model provides fast and stable calculations which are required for operational use.

Nowcasting systems of IRAM

operate 24/7 and provide location-specific forecasts of the **most critical weather parameters** for the airport operation with lead time of 4 - 6 h and update cycle of 10 min.

<u>SPb (Pulkovo)</u> -

MeteoExpert Aviation Meteo Center since 2018 Visibility Cloud ceiling 4 hours

MeteoTrassa Aerodrome service since 2014 Surface T and state 4 hours

MeteoExpert Aviation Meteo Center since 2014 Fog, visibility 6 hours

Irkutsk

Yuzhno-Sakhalinsk MeteoTrassa Aerodrome service since 2018 Surface T and state 4 hours

Operations at the **Irkutsk airport** are significantly impacted by **low visibility** caused by **fog** => MeteoExpert has been implemented to provide forecasts of fog and visibility

Data input: **AWOS** (1 min) and 3 **additional AWSs** (10 min) **at fogging sites** in the vicinity of the aerodrome (radius of ~5 km) for anticipating advection fog

Tabular, graph and map data displays on workstation and the website

Operations at **Saint-Petersburg (Pulkovo)** airport are significantly impacted by **low visibility and ceiling => MeteoExpert** provides **Visibility and Ceiling** nowcasts. To ensure the effective **maintenance in winter** (to keep runways, taxiways, stands free of **snow and ice**), **MeteoTrassa** provides the **aerodrome service** with measurements and forecasts, with emphasis on icing at the surface and precipitation. **Data input: AWOS** KRAMS-4, **AWS** Saima, Doppler **weather radar**, **AMDAR**, **RWS**.

Observations and forecasts are visualized on screens of workstations and the MeteoCube website

The **4-D MeteoCube** was designed at IRAM in accordance with the **ASBU concept** of the 4-D database of MET information as the best choice to ensure that accurate and timely weather data would be integrated into operational decision making

Precipitation, low ceiling and visibility

Case study (fog, 05.09.2018, Pulkovo) demonstrates an importance to have correct visibility forecasts for different aerodrome points, especially in inhomogeneous visibility conditions

Displays of recent, current and forecast weather for aerodrome service SPb

Accurate weather data and forecasts help aerodrome service **to react to hazardous weather in time** and to initiate **preventive** works.

Precipitation nowcast

Weather radar mosaic & wind vectors help visualize forthcoming weather

MeteoTrassa for aerodrome service Yuzhno-Sakhalinsk

MeteoTrassa for aerodrome service Yuzhno-Sakhalinsk

measurements

Verification is available on the website

	C ()	Не защи	щено ј те).43.0.112/e	xpero veril,														Q 🕁	θ
Карта	N	Іетео -	Π	рофиль те	мператур	ы	Верификация прогнозов							Помощь			lkovo	_nowcasting	Выйти	
lemec	экспер	т:вер	ификаці	ия прогн	030B															
594813_	e0301749,	• Вид	имость: 300	0м 🔻 06	.09.2018	00	03.2019	_	Считать	,										
						ьтаты о									ica					
анция	50.49	12 -020	1740		р	ассчитыва	емый пер	иод: с 06	-09-201	8 00:00) по 0	6-03-2	019 23	:59						
анция арамет		13_е030 мость: З																		
a	b	c	d	n	PC(%)	PC+(%)	PC-(%)	P+(%)	P-(%)	н	F	FAR	Miss	ORSS	EDI	SEDI	p(e)	prcs(мин)	adv(мин)	
					(/	()	. = ()	. ()	. ()								P(-/	P()		
4544	13180	1913	177776	207413	93	52	99	88	93	0.88	0.07	0.48	0.01	0.98	0.91	0.92	0.08	126	225	
J	словные	обознач	ения																	
				число сл	учаев, ког	да явление	е прогнози	ровалось	и наблк	одалос	ь									
b число случаев, когда явление прогнозировалось, но не наблюдалось																				
с число случаев, когда явление не прогнозировалось, но наблюдалось d число случаев, когда явление не прогнозировалось, но наблюдалось																				
d число случаев, когда явление не прогнозировалось и не наблюдалось n = a+b+c+d общее число прогнозов за заданный период																				
PC = (a+d)*100/n onpaguisacon portosola																				
PC+ = a*100/(a+b) оправдываемость прогнозов наличия явления																				
PC- = d*100/(c+d) оправдываемость прогнозов отсутствия явления																				
					предупрежденность прогнозов наличия явления предупрежденность прогнозов отсутствия явления															
= 0^10	0/(b+d)			предупре	ежденност	гь прогнозо	в отсутств	ия явлен	ия									Интервал	Идеальное	
																		значений	значение	
				коэффициент попаданий [0,1]										1						
= a/(a+	·C)						козффи	циент по	гадании											

- Forecasts have been verified against actual observations at 10-min intervals. Criteria of accuracy correspond to Annex 3 ICAO.
- **15 verification measures** are applied, incl.
- PC Proportion Correct, F False alarm rate, H Hit rate, Miss Miss frequency ...
- **ORSS** Odds Ratio Skill Score
- **EDI** Extremal Dependency Index
- **SEDI** Symmetrical Extremal Dependency Index

the most informative for forecast verification of rare events

Fog forecast verification

for the operation period over **2015-2018 in Irkutsk**

Visibility forecast verification

for the operation period over **2018.09 – 2019.03 in SPb**

Conclusion

- The nowcasting system is **specifically tailored to the airport needs**. Impact weather parameters are to be taken into account which are most critical for the airport.
- Verification shows the **reasonable accuracy** of forecasts and the **gradual increase of accuracy** for the operation period.
- Based on the verification it can be concluded that the nowcasting systems MeteoExpert and MeteoTrassa can give real support to aviation forecasters, aerodrome maintenance service and decision-makers at the airports.
- Development of the system is the process of making **algorithms gradually better**, and **technical component more diverse and advanced**.
- New MET information about high impact weather can be translated into the ATM systems for decision-making by means of the MeteoServer (the IRAM's system to provide ATM with MET data, > 40 systems in 6 countries)

Thank you

