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1 Introduction 
 
Introducing flow-dependency in NWP analyses is necessary in order to better represent the actual state 
of the atmosphere in the initial conditions for a weather forecast. Currently, widely used methods to 
achieve this goal are DA by ensembles and variational algorithms like 4D-VAR. Here a new method is 
presented that has the appealing properties of being easy to implement and well suited for applications 
demanding a very high update frequency (e.g. Very Short Range NWP or NWP-NWC). 
 

2 The Analysis Increments as a Gaussian Random Field on a Grid 
 
The analysis increments Δ on an N-grid can be considered a Gaussian Random Field with a source 
term S. This statement follows immediately from a reorganization of the terms in the 3D-VAR cost 
function 
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where the last term quadratic in the observation increments “(ob-fg)” in (1) has been disregarded. This 
amounts to consider the observation increments set as a non-random field. The source field S is just 
given by these increments after being duly normalized. The analysis problem becomes that of finding 
the Δ that maximizes the probability conditioned on a given set of observation increments : 
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and P(y) can be absorbed in the normalization, which is the so-called generating function N(S)  
 

   
 

 
   

1

2
1; ( ) 2

TS

S

J
S GSNJ

S N

e
P y P N S d d e G e

N S


 
           

2.1 3D-VAR Results Recovered from this Formalism 

 
The analysis is obtained by expectation of Δ as given by PS (Δ) 
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where the last equality follows from the well-known property of Gaussian Integrals for G symmetric 
and positive definite 
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In a similar way , one can see that the analysis error at grid point “i” is 
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These results are not surprising as soon as we notice that G-1 = (B-1 + R-1) is indeed the Hessian of the 
3D-VAR problem, that is, the inverse of the 3D-VAR analysis covariance error matrix, frequently 
denoted by A-1. The connection between the 3D-VAR algorithm and this Gaussian Integral (GI) 
formalism is explored further in section 4 after we next introduce a computation scheme by expansion 
in power series. 
 

2.2 The Error Covariance G as Green Function.  Analogy with QFT Propagators. 

 
It is possible to make a close analogy between the calculation of the 3D-VAR solution  just outline 
above, and common methods employed in the theory of random fields (QFT Quantum Field Theory) 
for the calculation of probability amplitudes for different fundamental physical processes (scattering 
cross sections, etc…). This analogy arises from thinking of the covariance matrix G as a kind of Green 
Function or, in QFT terminology, as a kind of propagator. This correspondence is just the reverse of 
that presented in [1],[2], where the similitudes between the Green Function for a variational 
constrained problem and covariance matrices were emphasized.   
 
One immediate application of this idea is to consider the possibility of introducing external fields in 
the formalism, as is done in QFT when, for instance, one wants to take into account the effect of an 
ambient electromagnetic field in the correction to the energy levels of an atom. In the case of interest 
here, we may introduce a V vector field that converts the correlation function (or “2-point function” in 
QFT parlance) in a functional of this V field  
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one can say that the “free propagation” or “kinetic energy” of the error field ( ½ ΔTG-1Δ) is corrected 
by an “interaction with a background V field” with coupling factor µ.  
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3 Implementation of a Computation Algorithm and First Tests 

The calculation proposed in (3) can be approximated by a power series in µ. With Vp=(up,vp,wp)  
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and the derivatives of analysis increments are approximated with finite differences on the grid. The 
result is that the correction to first order in µ is given by a sum over all the grid points of four-moment 
values, with this sum modulated by the V field: 
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These four-moment are in turn given by the matrix elements of G, because by Wick’s rule 
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These calculations let themselves be nicely represented by diagrams (the famous Feyman’s diagrams), 
but the number of terms becomes quickly very high. For instance, for a 3-D V field, to order µ we 
must sum over 21 four-moments, and to order µ2 the sum is over 126 six-moments (10 and 35 
respectively if we are satisfied with a 2-D V field). As each four-moment gives 3 products of pairs of 
G matrix elements and a six-moment gives 15 products of pairs, we have 63 of such products to order 
µ and 1890 to order µ2, to be sum over all grid points. This vast amount of computations can be 
dramatically reduced by using the fact that G is sparse (covariances of analysis errors decay with grid 
point separation).  
 
A first implementation has been utilized to evaluate the potential of this technique, both in terms of its 
impact on the analysis and also on its feasibility given a certain amount of computation power. The 
algorithm scales well with the number of observations: it is not necessary to compute these “2-point 
functions” for all pairs of grid points, is just enough to carry it out only for each observation.  
 
Below these lines, the deformation of an isotropic correlation (contoured on the left bottom corner) 
due to a vortex is shown (fig 1). On figure 2 the modulation caused by a HARMONIE-AROME wind 
field at level 55 on an isotropic correlation with length scale characteristic for the specific humidity 
variable is shown. This test with a 2-D V field and to order µ gave a processing time of about 1 
sec/observation.  
 

ALADIN-HIRLAM NL13, August 2019

43/61



 Carlos Geijo 
 

 
 

  

 
 

Figure 1: Correlations from 9 observations located in a vortex. Isotropic correlation for the one at the 
bottom-left is shown in contours, its length scale is 10 grid points. 

 

 
 

Figure 2: Horizontal correlation functions for 9 specific humidity (q) observations on an atmospheric 
level about 850hPa over the Iberian Peninsula, derived by coupling isotropic error 
correlations to the model wind field. The length scale of these isotropic correlations is 
determined from actual model errors.  

 

4  Approximation to the 3D-VAR Solution with Gaussian Integrals 
 
The 3D-VAR solution as given in (2) can be approximated by GI by decomposing the G propagator in 
a B propagator and a perturbation produced by the spatial distribution and correlations among the 
observations represented by R-1. This perturbation is given in model space (R-1 is actually HT R-1 H, 
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but the simpler notation is retained for comfort). R may not exist, but this is not a problem as it is not 
required for the calculations that follow. Indeed, R-1 will have, when represented on the grid, many 
zeros, which actually is an advantage to reduce the number of required computations !.   
 
The generating function 
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can be computed for small R-1 by expanding in powers of it 
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where the subscripts “G” and “B” have been introduced to distinguish the “free propagator” employed 
in each case. Here 
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These results can also be obtained more directly from (4) by making use of the “Neumann series” for 
G (see footnote), valid for linear bounded operators. This is always the case for operators on finite 
dimensional space, although convergence is not guaranteed. 
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and the following relation between determinant and trace of a matrix 
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so that 
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or up to the ε2 order 
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Now, the quantity that we need to compute is, according to (2): 
 
 
 
 
 
(footnote) Thank you to Roel Stappers for pointing out to me this formal solution for the 3D-VAR 
analysis 
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 which is the 3D-VAR solution as given by (5) to second order in R-1  
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