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Abstract 

Although precipitation has been measured for many centuries, precipitation measurements are 
still beset with significant biases and errors. Solid precipitation is particularly difficult to measure 
accurately, and biases between winter-time precipitation measurements from different 
measurement networks or different regions can exceed 100%. Using precipitation gauge results 
from the WMO Solid Precipitation Intercomparison Experiment (WMO-SPICE), errors in 
precipitation measurement caused by gauge uncertainty, spatial variability in precipitation, 
hydrometeor type, and wind are quantified. The methods used to calculate gauge catch 
efficiency and correct known biases are described briefly. Transfer functions describing catch 
efficiency as a function of air temperature and wind speed are also presented. In addition, the 
biases and errors associated with the use of a single transfer function to correct gauge under-
catch at multiple sites are discussed. 

Introduction 

Like many atmospheric measurements, precipitation is subject to the observer effect, whereby 
the act of observing affects the observation itself. The interference of a precipitation gauge on 
the air flow around it affects the measurement of precipitation. This is because hydrometeors 
falling towards a precipitation gauge can be deflected away from the gauge inlet due to changes 
in the velocity of the air around the gauge that are caused by the gauge itself. The magnitude of 
this effect varies with wind speed, wind shielding, the shape of the precipitation gauge, and the 
predominant size, phase, and fall velocity of the hydrometeors. Because all of these factors can 
significantly affect the amount of undercatch, it is difficult to accurately describe and correct the 
resultant errors for all gauges in all places in all types of weather. This has been an active area 
of research for over 100 yrs. (eg. Nipher, 1878;Alter, 1937;Jevons, 1861;Heberden, 1769), with 
significant findings for manual measurements described in a WMO intercomparison performed 
in the 1990s (Goodison et al., 1997;Yang et al., 1995;Yang et al., 1998). More recently studies 
of the magnitude and importance of such measurement errors have also been performed using 
both analytical (Theriault et al., 2012;Colli et al., 2015;Colli et al., 2016;Nespor and Sevruk, 
1999) and observational approaches (eg. Rasmussen et al., 2012;Wolff et al., 2013;Ma et al., 
2015;Wolff et al., 2015;Chen et al., 2015).   

Due to the importance of precipitation measurements for hydrological, climate, and weather 
research, and also due to the many outstanding unanswered questions and uncertainties 
regarding its measurement, beginning in 2010 the WMO began planning an international 
intercomparison focused on solid precipitation measurements. The goals of this intercomparison 



included the assessment of new automated gauges and wind shields, and the development of 
corrections for these gauges and wind shields. The ultimate goal of all of this work is to facilitate 
the creation of accurate and consistent precipitation records across different climates and 
different measurement networks, including measurements made using many different 
precipitation different gauges and shields (eg. Forland and Hanssen-Bauer, 2000;Yang and 
Ohata, 2001;Scaff et al., 2015). 

Results from the WMO Solid Precipitation Intercomparison were used to develop corrections for 
different types of weighing gauges, within different types of shields. Due to the nature of this 
unique dataset, which includes many periods of precipitation from many different sites, gauges 
and shields, new analysis techniques were also developed to accurately develop corrections 
and describe the errors inherent in applying such corrections. The focus of the work described 
below is on the most ubiquitous precipitation gauges used both within SPICE and in national 
networks for the measurement of solid precipitation. Unshielded and single Altar reference 
weighing gauges were present at all of the sites that had a an automated Double Fence 
Intercomparison Reference (DFIR), providing a unique opportunity to develop and test wind 
speed corrections for these gauges using multiple sites varying significantly in their siting, 
elevation, and climate. 

Methods 

Eight sites, each of which had an automated reference DFIR-shielded gauge, were included in 
this analysis. They include the Canadian CARE site (CARE), the Norwegian Haukeliseter site 
(Hauk), the Swiss Weissfluhjoch site (Weis), the Finnish Sodankyla site (Sod), the Canadian 
Caribou Creek site (CaCr), the Spanish Formigal site (For), the US Marshall site (Ma), and the 
Canadian Bratt’s Lake site (BrLa). These sites are described in more detail in the WMO-SPICE 
commissioning reports (available here: 
http://www.wmo.int/pages/prog/www/IMOP/intercomparisons/SPICE/SPICE.html). Results from 
the winters of 2013-2014 and 2014-2015 were used, with the exception of Formigal, Spain, 
where only one season of DFIR measurements was available. The reference weighing 
precipitation gauge types were designated by the SPICE International Organizing Committee as 
the Pluvio2 (OTT Hydromet, Kempten, Germany) and the T200B (3-wire T200B, Geonor Inc., 
Oslo, Norway). Some of the sites used here relied upon the Pluvio2 gauge (Sod, Weis, and For) 
and others used the T200B (CARE, Hauk, CaCr, Ma, and BrLa). Some of these sites had both 
types of gauges, with preliminary analysis indicating no significant differences between them, so 
we hypothesized that the effects of shielding, siting, and climate were much more important 
than the type of gauge used. The results of this study will confirm this hypothesis. 

The 30 min precipitation measurements created using the WMO-SPICE smoothing, QA/QC, 
and event selection criteria were used for all analyses presented here. These methods include 
the application of a Gaussian filter for minimizing high-frequency noise, the use of a separate 
precipitation detector for determination of periods with precipitation, and a minimum threshold of 
0.25 mm from the reference DFIR-shielded precipitation gauge.  

Additional QA/QC was performed on the resultant datasets for the purpose of developing 
accurate transfer functions. For example, at several sites wind directions associated with 



compromised wind speed and precipitation measurements due to wind-shadowing from towers, 
shields, and other obstructions were removed from the record. For the sake of developing and 
testing transfer functions, minimum thresholds were also used for the gauges under test.  

The use of a minimum threshold was necessary because even the reference DFIR precipitation 
measurements were subject to random variability. Tests performed using identical gauge/shield 
combinations likewise revealed that the application of a minimum threshold to only one gauge 
arbitrarily included some events near the threshold and excluded others, and thereby biased the 
results towards the gauge used for the event selection. Because the results were sensitive to 
the magnitude of the threshold of the gauge under test, a conservative minimum threshold for 
the gauge under test was estimated using Eq. 1. 

0.25	         (1) 

where THOLDUT is the threshold of the gauge under test, PUT is the 30-min precipitation from 
the gauge under test, and PDFIR is the 30-min DFIR precipitation. Only solid precipitation 
measurements (Tair < -2 °C) with relatively high winds (U10m > 5 ms-1, and U10m  <  9 ms-1) were 
used for the determination of the median catch ratio used to determine the THOLDUT. When all 
available measurements were used for the determination of the minimum threshold for the 
gauge under test, the inclusion of rain and low wind speed measurements resulted in a higher 
minimum threshold, which may have erroneously excluded valid low-rate, low-catch-efficiency 
solid precipitation measurements from the analysis. 

A minimum threshold was thus calculated for the reference unshielded (THOLDUT  = 0.06 mm) 
and single Alter gauges (THOLDUT  = 0.10 mm), and all respective measurements from the 
gauges under test that were below this threshold were excluded from the analysis. 
Unreasonably large accumulations were also removed using the measured catch efficiency (CE 
= PUT/PDFIR), with large outliers from the gauge under test identified and excluded from the 
analysis when the catch efficiency was more than three standard deviations greater than one: 

3 1 . The resultant maximum unshielded (UN) threshold was 1.93 x PDFIR, 
and the maximum single Altar (SA) threshold was 1.98 x PDFIR. 

To develop transfer functions for both 10 m height and gauge-height wind speeds, the best 
available wind speed sensor at every site was used to estimate both the 10 m and the gauge 
height wind speeds. The exact methods used to do this varied site-by-site based on the 
available wind speed measurements, but generally the log-profile law was used to predict the 
change in wind speed with height.  

	 	 ln           (2)  

where Uz is the wind speed (U) at a height z (Uz). Using 30-min mean wind speeds 
uncompromised by obstacles, the roughness length and displacement height were estimated for 
sites with wind profile measurements (Thom, 1975), and for sites without wind speed 



measurements at multiple heights a generic roughness length (z0 = 0.01 m) and displacement 
height (d = 0.4 m) were used. 

The available measurements from all eight sites were combined to create individual transfer 
functions for both the UN and SA gauges. For example, the unshielded reference weighing 
gauge measurements at all eight sites were pooled together and used to create a single 
universal UN transfer function. Individual site errors and biases were assessed by applying the 
resultant universal transfer function and comparing the results to the DFIR measurements at 
each site. These errors were used to calculate RMSE and biases site by site, for all of the sites. 
This approach was chosen because it produced transfer functions that best represented all of 
the sites within WMO-SPICE while simultaneously providing realistic estimates of the magnitude 
of site biases that can occur based on local variations in climate.  

A single transfer function of Tair and U was created using all the like reference precipitation 
gauge measurements. For example, all of the unshielded reference precipitation measurements 
were grouped together irrespective of whether they were recorded using a Pluvio2 or a T200B. 
This transfer function was then used to estimate the reference DFIR precipitation, and the 
RMSE and bias were calculated at each site individually using the difference between the 
corrected single Alter or unshielded gauge and the actual DFIR precipitation. Equation 3 
describes the form of transfer function used. 

	 	 		  ,        (3) 

where U is wind speed, Tair is the air temperature, and a, b, and c are coefficients fit to the data. 
The sigmoid transfer function (Wolff et al., 2013) was also tested with these data, but did not 
perform significantly better than eq. 1, so the simpler eq. 1 was used. 

Without explicitly including Tair, transfer functions for mixed and solid precipitation were also 
created separately as an exponential function of U using Eq. 4.  

	 	            (4) 

where a, b, and c are coefficients fit to the data. This was done for comparison with past studies 
that used similar techniques, to make such corrections available to users that prefer them, and 
also to evaluate the advantages and disadvantages of explicitly including Tair in the transfer 
functions. 

Due to the prevalence of air temperature measurements in precipitation measurement networks, 
and the fact that not all of the WMO-SPICE sites included precipitation type measurements, Tair 
was used to determine precipitation type. Mixed precipitation was defined as Tair ≥ -2 °C and Tair 
≤ 2 °C, and solid precipitation was defined as Tair < -2 °C. Liquid precipitation (Tair > 2 °C) data 
were also evaluated, but due to the limited quantify of warm-season measurements and the 
negligible magnitude of the liquid precipitation correction, no rain transfer functions were 
created. For comparison with the Eq. 3 results, the resultant transfer functions were used to 
correct the precipitation measurements, with no correction applied to the liquid precipitation 
measurements.  
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