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ABSTRACT

The finite-element method with B splines is used for definition of vertical operators in the non-

hydrostatic fully compressible dynamical core of the ALADIN system. It represents a generalization of

the same method used in the hydrostatic dynamical core shared by the ALADIN system and the global

forecast system ARPEGE/IFS. The method is shown to be robust enough in idealized academic

tests and real simulations. Its theoretical superiority is shown when compared with the finite-

difference method.

1. Introduction

The nonhydrostatic effects start to play a significant

role when the dimension of both the horizontal and

vertical scales of motion become comparable. This

happens typically when reaching a horizontal grid size of

around 2km. Aimed at achieving those scales, non-

hydrostatic dynamics was introduced in the originally

hydrostatic limited-area NWP system ALADIN. The

fully compressible nonhydrostatic dynamical kernel of

the ALADIN system was designed following the rule

that it keeps as many features of its hydrostatic version as

possible. The basic choices made are as follows: the spec-

tral technique used for the horizontal spatial discretization,

semi-implicit time stepping, and semi-Lagrangian ad-

vection [seeBubnová et al. (1995) andBénard et al. (2010)
for details].

For vertical discretization, the finite-difference (FD)

scheme of Simmons and Burridge (1981) was applied

since the beginning of the project, innovated with

the semi-Lagrangian vertical advection according to

Ritchie et al. (1995). This scheme is only first-order ac-

curate for nonuniform spacing of vertical levels. An al-

ternative finite-element (FE) vertical discretization was

implemented in the hydrostatic core of the ALADIN

system and in the global forecast systemARPEGE/IFS by

Untch and Hortal (2004). A remarkable fact is that, with

the hydrostatic approximation and the semi-Lagrangian

advection, the only vertical operations needed are vertical

integrals. Therefore, an integral operator was derived

based on the Galerkin method using cubic B splines

with compact support as basis functions. Also, the use

of piecewise linear B-spline basis functions was implem-

ented as an alternative option. It was shown that the FE

scheme gives more accurate phase speeds of most of the

linear gravity waves than the FD scheme. In addition, the

cubic FE scheme has proven to be eighth-order accurate

for integrating smooth functions, compared to the first-

order accuracy of the FD method. Furthermore, the FE

scheme reduces the level of vertical noise in forecasts

with the full hydrostatic model of ECMWF, reduces the

cold bias in the lower atmosphere, and improves the

transport in the stratosphere. Consecutively, the FE ver-

tical discretization has been tested in several hydrostaticCorresponding author: Petra Smolíková, petra.smolikova@chmi.cz
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applications of the limited-area model ALADIN, with

detected positive impact on the objective verification

scores. On top of that, the FE method has proven ben-

eficial in 2D vertical plane idealized tests of a resting,

hydrostatically balanced state. Finally, but not less im-

portant, the computational cost of such an improvement

in accuracy is negligible, because the FE integral operator

is defined once in the setup of the model, and it is used in

the model, otherwise, exactly in the same way as the FD

integral operator.

Not surprisingly, a need has emerged to extend the

FE method to the vertical discretization of the fully

compressible dynamical core of the ALADIN system.

This task has shown to be more intricate and trou-

blesome. Contrary to the hydrostatic equations in a

mass-based vertical coordinate, where only the verti-

cal integral operator appears, and to the fully com-

pressible system of equations cast in a height-based

coordinate, where only the vertical derivative opera-

tor occurs (Simarro and Hortal 2012), in the fully

compressible Euler equations of the ALADIN system

designed for the mass-based vertical coordinate, both

the integral and the derivative vertical operators appear

(Laprise 1992).

The difficulty lies not in the necessity to define both

sets of operators, but in the need to define them con-

sistently in order to assure the stability and accuracy of

the model. There are two points in the nonhydrostatic

dynamical core of the ALADIN system where the re-

placement of the FD operators by the high-order FE

operators must be done carefully.

The first crucial point is the semi-implicit scheme. As

it is explained in Bubnová et al. (1995), in the semi-

implicit step of the ALADIN system, an implicit linear

system is solved separately for each horizontal spectral

eigenfunction. The unknowns are here the amplitudes

of the prognostic variables at each model level for the

next time step. The procedure is to reduce the system

to a Helmholtz equation for the vertical divergence

amplitudes. Because of this reduction, and for stability

reasons, an analytic relation involving vertical opera-

tors, the so-called C1 constraint, must be fulfilled by

the discrete version of those operators (see section 5b

and appendix B for C1 definition). The FD operators

of the nonhydrostatic dynamical core of the ALADIN

system are defined in such a way that C1 constraint is

satisfied. However, if the vertical operators do not

fulfill the C1 constraint, as it is the case for the FE

operators defined in this work, an alternative method

must be adopted. We stop the reduction of the implicit

linear system toward the Helmholtz equation just be-

fore the point where the C1 constraint is used. In this

way, a linear system involving the vertical divergence

and horizontal divergence amplitudes appears, which

is solved iteratively. Such a solution converges in all

tested idealized and real cases and, because of the

choice of a convenient preconditioning of the system,

one iteration of the implicit solver is enough to reach

satisfying results. The computational price to be paid is

very small and does not penalize the whole integration

significantly.

The second crucial point is the transformation be-

tween the vertical divergence, used in the spectral cal-

culations for stability reasons explained in Bénard et al.

(2004, 2005), and the vertical velocity, used in the grid-

point calculations. This transformation must be invert-

ible, and it implies that integral and derivative vertical

operators cannot be defined independently. This goal is

not fulfilled for FE operators up to now, and the trans-

formations between the vertical divergence and the

vertical velocity are still FD ones. The accuracy reached

in real forecasts may thus be limited by this fact, and it is

foreseen to include invertible high-order transforma-

tions between vertical velocity and vertical divergence

in the future.

In this paper we follow the notation of the refer-

ence papers Bubnová et al. (1995) and Bénard et al.

(2010), with small differences. Functions that appear

in the paper are mostly space and time dependent.

We omit the horizontal space and the time depen-

dence, since we are interested in the vertical space

dependence only. Continuous functions are written

in lightface italic font ( f ), discrete functions repre-

sented as vectors of values at individual vertical levels

are written in boldface roman font (f), analytic linear

operators are written in calligraphic font (P ), and

discrete operators represented as matrices are written

in underlined, boldface sans serif font (P). Moreover,

a vector f contains values in the physical space, while

f̂ contains values in the B-spline function basis space.

For the latter one, a basis of B-spline functions must

be specified.

The paper is organized as follows. In section 2, model

variables and the set of equations used are presented. In

section 3, the definition of discrete vertical operators

based on FE is described, while vertical operator ac-

curacy is discussed in section 4. A semi-implicit time

scheme and the consequences that the usage of FE

method in vertical has on its design are given in

section 5. Results of idealized test cases are shown in

section 6, where the comparison with reference cases

using the FD method is shown. Real case experiments

are presented in section 7 with the average computational

time needed for their execution. Section 8 summarizes

the results achieved, outlines future directions, and

concludes the paper.
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2. Model variables and equations

The aim of this work is to develop a set of high-

resolution FE vertical operators and to implement it in

the nonhydrostatic fully compressible dynamical core of

the ALADIN system. Therefore, the model equations

are exactly the same as those detailed in Bénard et al.

(2010). For completeness, we rewrite the model equa-

tions here, with some simplifications in order to make

the reading easier.

For the sake of simplicity we restrict ourselves to

the dry shallow atmosphere and omit the Coriolis,

frictional, and diabatic forcing. On top of prognostic

variables used in the hydrostatic core of the ALADIN

system, which are the horizontal velocity vector V

with two components, temperature T, and logarithm

of hydrostatic surface pressure qs 5 ln(ps), there are

two additional nonhydrostatic variables in the fully

compressible core of the ALADIN system: a measure

of the pressure departure from the hydrostatic value,

q̂5 ln
p

p
, (1)

and vertical velocity w. Here p is the true pressure, and

p is hydrostatic pressure calculated as p5A(h)1
B(h)ps, where A(h) and B(h) are horizontally con-

stant chosen functions that implicitly define the ver-

tical coordinate h (Simmons and Burridge 1981). The

fully compressible Euler equations of the ALADIN

system in the hybrid-mass-based vertical coordinate

h for the set of prognostic variables (V, w, T, q̂, qs) are

written as follows:

dV

dt
52

RT

p
=p2

�
p

p
1

p

m

›q̂

›h

�
=f , (2)

dw

dt
5

g

m

›(p2p)

›h
, (3)

dT

dt
52

RT

C
y

D
3
, (4)

dq̂

dt
52

C
p

C
y

D
3
2

v

p
, (5)

›q
s

›t
52

1

p
s

ð1
0

= � (mV) dh , (6)

where = is the gradient along the constant h surfaces;

R is the perfect gas constant for dry air; g is the accel-

eration of gravity; m5 ›p/›h is the vertical metric fac-

tor; f is the geopotential;Cp and Cy are the specific heat

capacities of dry air at constant pressure and volume,

respectively;v indicates themass-based vertical velocity

diagnosed from

v5
dp

dt
5V � =p2

ðh
0

= � (mV) dh ; (7)

and D3 stands for the local tridimensional divergence:

D
3
5= � V 2 g

p

mRT

›w

›h
1

p

mRT
=f � ›V

›h
. (8)

The geopotential f is obtained through an upward in-

tegration of atmospheric depths from the surface geo-

potential fs using

f5f
s
1

ð1
h

mRT

p
dh . (9)

The total derivative operator on the left-hand sides of

the prognostic equations is defined as

d

dt
[

›

›t
1V � =1 _h

›

›h
. (10)

Finally, to complete the system a diagnostic relation for

the vertical velocity at the surface yields

w
s
5
1

g
V

s
� =f

s
, (11)

and the total time derivative of the vertical coordinate is

given by

_h5B(h)
1

m

ð1
0

= � (mV) dh2
1

m

ðh
0

= � (mV) dh . (12)

3. Finite-element scheme

To solve numerically the equations briefly described

in the previous section, the spatial domain is discretized

horizontally and vertically. In the vertical, the model

domain is divided into a number of L layers, using the

mass-based vertical coordinate described in Simmons

and Burridge (1981). The full model levels are located

inside these layers, while the half model levels are lo-

cated at the material boundaries, that is, at the top and

bottom of the atmosphere, and at the interfaces between

layers. The model variables are staggered in the vertical

direction, being all the variables defined at full levels,

with the exception of the vertical velocity, which is lo-

cated at half levels. See Fig. 1 for vertical staggering

illustration.

On the other hand, the horizontal discretization

is spectral based on the use of eigenfunctions of

the horizontal Laplacian operator, and all horizon-

tal derivatives are calculated in the spectral space
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(Bubnová et al. 1995). In the following, we omit the

horizontal direction, as this work is focused on

vertical operators.

The method used for constructing FE operators is

similar to the procedure described in Untch and Hortal

(2004). However, there are differences, mainly, as it is

explained later in this section, the inclusion of bound-

ary conditions that are applied to the input and output

functions and the general order of basis functions used.

To make a clearer exposition of the method, we first

describe how the vertical operators are used in

the model.

Let us consider an unknown continuous function f (h)

as an input, from which just a discrete representation f is

known, which consists of the values of the function f at

the L full model levels:

f5 f
1
, . . . , f

L

� �T
5 f h

1

� �
, . . . , f h

L

� �� �T
. (13)

For a linear operator P , defined analytically, we want

to find a high-order discrete representation. That is, a

matrix P such that

P � f’ P (f ) h0
1

� �
, . . . ,P (f ) h0

L
0

� 	h iT
. (14)

The output levels h0
1, . . . , h

0
L
0 are not necessarily equal to

the input levelsh1, . . . , hL, although itwill be the case for all

the operators we define, except one (viz., Dh in Table 1).

Now, we introduce a novelty with respect to the

method described in Untch and Hortal (2004). The dis-

crete representation P of a linear operator P may force

the input function f (h) to satisfy some linear boundary

conditions. For example, discrete representation of the

input function can be forced to be zero at the top of the

atmosphere, f (0)5 0, or to have zero derivative at

the surface, f 0(1)5 0. Similarly, the output function

g(h)5P (f )(h) discrete representation may be forced

to satisfy some linear boundary conditions. In some

cases, the boundary conditions are analytical proper-

ties of the operators being discretized. In other cases,

we found out that the boundary conditions are crucial

to achieve stability in the semi-implicit scheme, al-

though, we did not find the way to mathematically

demonstrate this fact. In any case, the conditions

imposed on the input and output functions being de-

rived from model variables are fully compatible with

physical properties of these variables. The complete

list of used operators is in Table 1 with linear

boundary conditions specified. Notice that there are

four versions of the first derivative operator, each of

them is used at different positions of the linear and

nonlinear model equations, as is shown later;Dq andDh

share the same boundary conditions, but they differ in

used output vertical levels as described later.

There is one integral operator Ih0 defined in Table 1. It

represents integration from model top to model level h.

The total integral over atmosphere I10 is obtained when

Ih0 is evaluated on model surface (h5 1). The integral

operator from model surface to model level h is defined

as the difference:

I1h � f5 I10 2 Ih0

� 	
� f , (15)

which represents the discrete equivalent of the additive

integral property,ð1
h

f dh0 5
ð1
0

f dh0 2
ðh
0

f dh0 .

In the following paragraphs we describe first how the

discrete representation of a continuous function known

TABLE 1. Boundary conditions for discrete FE operators used in the

model. Input and output functions are f (h) and g(h), respectively.

Operator

Analytic

representation Top BC Bottom BC

Dp
›

›h
f (0)5 0 f (1)5 0

f 0(0)5 0 f 0(1)5 0

Dq , Dh ›

›h

f (0)5 0 f (1)5 0

f 0(1)5 0

Dp ›

›h

f (0)5 0 f (1)5 0

f 0(1)5 2p*

DDp ›2

›h2

f (0)5 0 f (1)5 0

f 0(0)5 0 f 0(1)5 0

Ih0
ðh
0

f 0(0)5 0 f (1)5 0
g(0)5 0 f 0(1)5 0

FIG. 1. Staggering of variables among vertical half and full

model levels.
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on model h levels is obtained, and then how the vertical

operators are constructed.

a. Interpolation with B-spline curve

In the process of discretizing vertical operators, we

apply the FE procedure, as described for example in

Lynch (2005). We use B-spline functions of a general

order as the basis functions. Thus, linear functions and

cubic B splines are particular choices that are consistent

with the FE method used in the hydrostatic dynamical

core of the ALADIN system.

First, we aim to find the input function f (h) from the

vector of known values f5 (f1, . . . , fL)
T at full model

levels and from the boundary conditions that f (h) must

satisfy according to Table 1. For this purpose, a basis of

B-spline functions aj(h) is constructed and the function

f (h) is written as a linear combination:

f (h)5�
j2Ia

f̂
j
a
j
(h) , (16)

where the coefficients f̂j are found from the interpolation

conditions f (hk)5 fk and the boundary conditions. The

linear boundary conditions can be imposed on the

function f (h) in two ways. The first way, which we call

implicit, is to define the basis functions aj(h) in such a

way that they already satisfy the linear boundary con-

ditions. Therefore, any linear combination of the basis

functions also satisfies these conditions. The secondway,

which we call explicit, is to construct, from the expansion

in (16), a linear system using the interpolation condi-

tions f (hk)5 fk and the boundary conditions, and to

solve this linear system providing the unknown coef-

ficients f̂j. Notice that we may impose implicitly only

horizontally homogeneous boundary conditions con-

stant in time since the basis is chosen only once in the

setup of the operator, and for all horizontal grid points at

once. It follows that Dp may be defined only with ex-

plicit boundary conditions. Both approaches lead to

discrete representation of a given vertical operator with

given boundary conditions, although these representa-

tions differ. We use explicit definitions for input boundary

conditions in all experiments.

The number of basis functions, that is, the cardinal of

the index Ia in (16), depends on the number of levels, the

number of boundary conditions, and the method used

to impose them. It is L if the implicit method is used,

and L1B if the explicit method is used, B being the

number of boundary conditions. The actual shape of

the basis functions depends on the number of levels, the

boundary conditions, and the order of the B splines. In

appendix A we describe in detail how basis functions are

constructed.

Therefore, the function f (h) is uniquely defined by the

coefficients f̂, which in turn are determined from values

of the function at full model levels f and the linear

boundary conditions. As all the operations and condi-

tions involved are linear, we can write a linear relation

between f and f̂, that is, f5A � f̂. Moreover, the basis

functions are carefully defined to ensure A invertibility,

and then

f̂5A21 � f . (17)

Once the basis functions aj and the coefficients f̂ are

specified, the relation in (16) gives the input function f (h).

b. Vertical operator definition

The goal now is to find an output function g(h) that

represents the result of the linear operatorP application

to the input function f (h) obtained in the previous

paragraph. The output function, besides being a good

approximation of P (f ), must satisfy the output boundary

conditions given in Table 1. To this end, the so-called

implicit method is used, that is, a set of B-spline basis

functionsbj(h) that satisfies the linear boundary conditions

is chosen. As already mentioned, by doing so, any linear

combination of the basis functions satisfies these boundary

conditions. Therefore, the candidates for the output

function g(h) are the following linear combinations:

g(h)5 �
j2Ib

ĝ
j
b
j
(h) , (18)

where the coefficients ĝj must be determined following

the method of mean weighted residuals (Untch and

Hortal 2004). Provided a set of arbitrary weighting

functions wj(h) the traditional FE approach leads to

the following conditions:

ð1
0

P (f )(h)w
j
(h) dh5

ð1
0

g(h)w
j
(h) dh , (19)

for each j. When (16) and (18) are substituted into (19)

and because of the linearity of the operator P we find

M � ĝ5S � f̂ , (20)

where the mass matrix M is given by

ðMÞ
ij
5

ð1
0

w
i
(h)b

j
(h) dh , (21)

and the stiff matrix S is given by

ðSÞ
ij
5

ð1
0

w
i
(h)P [a

j
(h)]dh . (22)
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Therefore, the output function g(h), satisfying both (19)

and the linear boundary conditions, is determined by its

expansion in the basis bj(h), whose coefficients can be

obtained from (20) by inverting themassmatrix as follows:

ĝ5M21 � S � f̂ . (23)

Using (18) the output function g(h) is determined. Fi-

nally, the last step is to evaluate the output function at

the output levels h0
k, that is,

g h0
k

� �
5 �

j2Ib
ĝ
j
� b

j
h0
k

� �
. (24)

This linear equation can be written in matrix form as

g5B � ĝ , (25)

where

ðBÞ
ij
5 b

j
h0
i

� �
. (26)

Then, the FE matrix for the linear operator P is

found by grouping the results given in (17), (23), and (25),

that is

P5B � M21 � S � A21 . (27)

Matrix P is a high-order approximation of the linear

operator P for any input function f that satisfies the

input linear boundary conditions such that P (f ) satisfies

the output linear boundary conditions. It must be stressed

that, when applying the FE operators listed in Table 1 in

the model, we must check that these operators are applied

on functions that can be naturally forced to satisfy the

linear boundary conditions.

In general, the operator matrix P is a dense matrix.

For operators in Table 1 used in the 3D simulations of

section 7, the number of nonzero elements of operator

matrices is above 75%. The nonlocality of the operator

matrix has an impact on the efficiency of the FEmethod

through the matrix multiplication.

4. Accuracy of vertical operators

We apply the vertical FE operators from Table 1 to

the smooth function j(h)5 sin3(3ph) cos(3ph) satis-

fying all the input boundary conditions listed in Table 1,

except for the operator Dp that matches Dq far from

boundaries. The analytic value of the integral and de-

rivative of j can be easily calculated. Hence, we cal-

culate the mean absolute error (MAE) of each FE

operator for several regular distributions of h in the

interval (0, 1). The achieved order of accuracy of the

defined operators is then calculated through a linear

regression model and listed in Table 2. The table shows

as well the mean absolute errors and the analytically

estimated order of accuracy of the tested operators. We

denote the FD derivative operators of the kth order as

FDk , and the FD second derivative operator of the kth

order as FDDk . Vertical operators constructed with

finite-element method suffer from the error close to the

domain boundaries, while in the central part they show

the theoretically calculated high order. Let us recall that

the accuracy order of finite-difference vertical dis-

cretization currently used in the operational applica-

tions of the ALADIN system is only two for regular

distribution of vertical levels and one otherwise. The

mean absolute error of the current FD vertical operator

for the first derivative is 4–8 orders bigger then the same

error for the vertical operators designed with FE and

described here. See Fig. 2 for comparison. The mean

absolute error of the defined vertical operators in

TABLE 2. The mean absolute error (MAE) of the vertical derivative operators applied on j for several resolutions with regularly

distributed vertical levels. The accuracy order of these operators is calculated fromMAE using linear regression (Calculated order). The

analytically estimated accuracy orders (Analytical order), published in Staniforth andWood (2005) for the first derivative FEoperator and

derived in section 4 for the second derivative FE operator, are listed in the last column. The FD derivative operator of the kth order is

denoted as FDk and the FD second derivative operator of the sixth order is denoted as FDD6 .

Operator

MAE

Calculated

order

Analytical

order

No. of levels

50 100 200

Dp 2.53 1026 8.43 1029 3.13 10211 8.15 8

Dq 4.13 1026 8.43 1029 3.13 10211 8.5 8

FD8 1.83 1026 7.33 1029 2.93 10211 7.97 8

Dh 0.0029 0.00016 9.7 3 1026 4.21 4

FD4 0.002 0.00012 7.7 3 1026 4.01 4

FD2 0.066 0.017 0.0042 1.98 2

DDp 8.83 1024 1.23 1025 1.7 3 1027 6.16 6

FDD6 0.00057 9.23 1026 1.4 3 1027 5.95 6
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relation to the number of vertical levels is shown in

Fig. 3. The order of these operators summarized in

Table 2may be compared to ideal lines. To eliminate the

boundary effects, we omit in the calculations 1/5 of the

domain on each boundary.

When using cubic B splines, more than eighth-order

accuracy is achieved for the integral and the first de-

rivative operators Dp andDy , more than sixth order

is achieved for the second derivative operator DDp ,

and fourth order is achieved for the first derivative

operator Dh with the change of vertical levels distri-

bution at the output. This property is called super-

convergence and it is linked to regular model levels

distribution solely. We do not show values for the

vertical integral; they may be found in Untch and

Hortal (2004).

The theoretical accuracy of integral and first de-

rivative operators defined with cubic B splines was

mathematically explained in Staniforth and Wood (2005).

To the best of our knowledge, the same has not yet been

done for a second derivative operator defined with cubic

splines. We show here that the theoretical accuracy of

DDp is 6.

We assume regular h level distribution with distance

Dh5 h. We follow the process described in section 3b to

approximate g5P (f )5 ›2f /›h2. Let f̂ and ĝ be the co-

efficients of the linear transformations (16) and (18) and

let f and g be values of f and g at full model levels. Let us

consider full model levels far enough from the domain top

and bottom boundaries.

We use the following equalities

FIG. 2. The error of the defined FE vertical operators and of their FD counterparts calculated with 100 regularly

distributed vertical levels, for (left) the first derivative and (right) the second derivative. We denote the eighth-order FD

operator for the first derivative as FD8 and the sixth-order FD operator for the second derivative as FDD6 .

FIG. 3. The mean absolute error of the defined vertical operators in

relation to the number of vertical levels. Black lines show ideal line

corresponding to the order 4, 6, and 8. The ideal line is followed almost

exactly with FD operators of the corresponding order (not shown).
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1

5040
(ĝ

k13
1 120ĝ

k12
1 1191ĝ

k11
1 24161 1191ĝ

k21
1 120ĝ

k22
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k23
)

5
1

120h2
(f̂

k13
1 24f̂
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2 801 15f̂
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) , (28)

1

5040

�
g
k13

1 g
k23

2
1 120

g
k12

1 g
k22

2
1 1191

g
k11

1 g
k21

2
1 1208

�

5
1

120h2

�
f
k13

1 f
k23

2
1 24

f
k12

1 f
k22

2
1 15

f
k11

1 f
k21

2
2 40

�
, (29)

(mh)2[cos(3mh)1 120 cos(2mh) 1 1191 cos(mh)1 1208]fg
m

5 42m2[cos(3mh)1 24 cos(2mh)1 15 cos(mh)2 40] ef
m
. (30)

First, we express the kth element of (20) using (21)

and (22) and cubic spline basis functions aj(h) and bj(h)

to get (28). Far from domain top and bottom bound-

aries, the transformations (16) and (18) may be writ-

ten as

f
k
5 f h

k

� �
5

1

6
f̂
k11

1 4f̂
k
1 f̂

k21

� 	
,

g
k
5 g h

k

� �
5
1

6
ĝ
k11

1 4ĝ
k
1 ĝ

k21

� �
.

Thus, a weighted combination of (28) evaluated at

k2 1, k, and k1 1 gives (29) for the full level values

f and g.

The truncation error may then be determined by the

Taylor expansion of the Fourier series proceeding in

the similar way to Staniforth and Wood (2005). We

expand (fk, gk) as (fk, gk)5 ( efm, fgm) exp(imkh), where

m is a wavenumber and efm and fgm are the coefficients of

the discrete Fourier expansion of fk and gk, respectively.

It yields (30). We approximate by the Taylor series and

simplify as follows:

42[cos(3mh)1 24 cos(2mh)1 15 cos(mh)2 40]

(mh)2[cos(3mh)1 120 cos(2mh)1 1191 cos(mh)1 1208]

’212
m6h6

30 240
1O (m8h8) .

Finally, for the discrete Fourier expansion coefficients

we get

fg
m
52m2 ef

m
11

m6h6

30 240
1O h8

� �
 �
giving the expected sixth-order accuracy of the second

derivative operator g denoted DDp in Table 1.

5. Time stepping

a. Linear system

The dynamical core of the ALADIN system uses the

Z grid as described in Caluwaerts et al. (2015). The

horizontal momentum equation (2) is reformulated in

the linear model used by the semi-implicit time stepping

in terms of horizontal divergence D and relative vor-

ticity z:

D5
›u

›x
1

›y

›y

j5
›y

›x
2
›u

›y
. (31)

For stability reasons described in Bénard (2003) and

Bénard et al. (2004, 2005) also the vertical momentum

equation (3) is transformed into vertical divergence d

defined as

d52g
p

mRT

›w

›h
1

p

mRT
=f � ›V

›h
. (32)

Thereby the full implicit treatment of the tridimen-

sional divergence term (8) is achieved, since it be-

comes the linear combination of prognostic variables

as follows:

D
3
5D1 d . (33)

On the other hand, there is no semi-implicit correction

of vorticity in spectral space. Only the divergent part of

the flow is corrected under our assumptions used in

the linear model definition (Bénard et al. 2010). The

transformation (31) and its inverse is carried out in

spectral space of the ALADIN system. However,

this is not admissible for the vertical part as (32)

is nonlinear. Hence, the transformations between w and d
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must be done in gridpoint space. Right after inverse

Fourier transformations we retrieve w from d.

Then an explicit guess of all prognostic quantities

is computed using the time explicit semi-Lagrangian

scheme. It allows us to recover an explicit guess of

d using (32). Finally we add to the explicit guess

the missing terms related to the semi-implicit part

of the computation and then the total forcing terms of

the prognostic quantities (V, d, T, q̂, qs) are transformed

into spectral space where the implicit problem is solved.

The transformation of prognostic variables between

spectral and gridpoint space is not a physical process. It

should not contribute to the time evolution of quantities

under transformations. This means that the vertical in-

tegral operator used when going from d towmust be the

inverse of the vertical derivative operator used in the

opposite direction. To define relevant FE operators

ensuring this property is a cumbersome problem and we

have not succeeded in formulating such operators while

preserving stability properties. For that reason, w to

d transformation and d to w backward transformation

are done with FD operators Td and Tw , respectively,

with prognostic quantity w being placed on half model

levels (Lorenz 1960). Indeed, Tw is a discrete repre-

sentation of an integral from the surface to the h level,

while Td represents vertical derivative along h. For a

function f5 (f1, . . . , fL)
T defined on full model levels

and a function g5 (g~1, . . . , g ~L)
T defined on half model

levels, we may write

T
w

� mf
� 	

~l
5 g

s
1 �

L

k5l11

f
k
dp

k
, (34)

1

m
T
d
� g

� �
l

5
g~l 2 gfl21

dp
l

, (35)

where dpk is defined by (C2) in appendix C and gs
represents the bottom boundary condition that has to

be specified before transformation. Since g5w in our

case we use (11) as the bottom boundary condition.

Notice that the resulting functions are defined on half

model levels and full model levels, respectively.

The linear system in terms of prognostic variables

(D, d, T, q̂, qs) is obtained by traditional linearization

around the reference atmosphere at rest, hydrostati-

cally balanced, dry, isothermal, and with no orography

(Bubnová et al. 1995; Bénard et al. 2010). The refer-

ence atmosphere is then given by two parameters

only: T* representing temperature and ps* represent-

ing surface pressure. The stability of the semi-implicit

scheme depends strongly on T* and ps*. Because of

stability reasons a coefficient r# 1 is used within

the linear model (Bénard 2004). The linear system

then writes

›D

›t
52RG DT1RT* ðG 2 1ÞDq̂2Dq

s

� �
, (36)

›d

›t
52

g2

rRT*
L q̂ , (37)

›T

›t
52

RT*

C
y

(D1 d) , (38)

›q̂

›t
5S D2

C
p

C
y

(D1 d) , (39)

›q
s

›t
52N D , (40)

where D is the horizontal Laplacian and the linear op-

erators ›, G , S , and N are defined in Bubnová et al.

(1995) as

›(f )5
p*
m*

›f

›h
, (41)

G (f )5

ð1
h

m*
p*

f dh0 , (42)

S (f )5
1

p*

ðh
0

m*f dh0 , (43)

N (f )5
1

p
s
*

ð1
0

m*f dh0 , (44)

where p*(h)5A(h)1B(h)ps* is the hydrostatic pres-

sure of the reference atmosphere and m*(h)5 ›p*(h)/›h

is the metric term.

Discretization of the vertical integral operators G , S ,

and N is straightforward. We first define p* as the

discrete version of p*(h), that is, the reference hydro-

static pressure evaluated at full model levels. Similarly

we define m* from m*(h).

Then, the discrete versions of the operators G , S , and

N are, respectively,

G � f5 I1h �
�
m*

p*
f

�
, (45)

S � f5 1

p*
Ih0 � (m*f) , (46)

N � f5 1

p
s
*
I10 � (m*f) . (47)

The vertical Laplacian is given by

L (f )5 ›(11 ›)(f ) , (48)

and its discretization is more cumbersome. For stability

reasons, we reformulate it in the continuous form to

L ( f )5
1

m*

›

›h

�
p*2

m*

�
›f

›h
1

�
p*

m*

�2
›2f

›h2
, (49)
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and substitute vertical derivatives using the discrete

FE operators Dp , Dp , and DDp . Finally, the discrete

Laplacian operator is given by

L � f5 1

m*

"
D

p
�
�
p*2

m*

�#
D

p
� f

� 	
1

�
p*
m*

�2

DD
p
� f

� 	
. (50)

b. Implicit problem

In the semi-implicit scheme of the ALADIN system

with the FD method used in the vertical, a single

Helmholtz equation is solved in the spectral space. This

equation is reached by a suitable algebraic elimination of

all variables but one, namely, d. There is a mathematical

constraint, called C1, which enables such elimination, and

it writes

GS 2S 2G 1N 5 0. (51)

Unfortunately, this constraint is not fulfilled for the

FE operators used in the vertical discretization. On the

other hand, the implicit problem in the discrete form is a

linear inversion, and could be performed with two or

more variables. If we adopt a solution of the implicit

problem for the couple (D, d), then the constraint C1 no

longer needs to be fulfilled. Instead of solving a system of

L equations for the variable d, the Helmholtz equation,

we can solve a system of 2L equations for the couple

(D, d). However, solving this equation by direct inversion

has particular memory requirements. This is because we

should invert, in the setup of the model, a considerable big

set of matrices, one for each pair of spectral wavenumbers,

and store them during the whole integration.

Therefore, instead of a direct inversion, we have opted

for a preconditioned iterative method, which we outline

in appendix B.

c. Nonlinear system

The vertically discretized fully compressible Euler

equations are written as follows:

dV

dt
52

RT

p
=p2

 
p

p
1

p

m
� D

q
� q̂
!

� =f , (52)

dT

dt
52

RT

C
y

D
3
, (53)

dq̂

dt
52

C
p

C
y

D
3
2

v

p
, (54)

›q
s

›t
52

1

p
s

I10 � (= � (mV)) . (55)

These equations are evaluated at full model levels, while

the equation for vertical velocity is evaluated at half model

levels, since it is a half-level quantity. For this reason, we

need FE operator for the first derivative, denoted Dh ,

which gives values of the first derivative on the half model

levels, when it is applied to a full-level variable. Then

dw

dt
5

g

m
h

D
h
� (p2p) , (56)

where mh is a discrete representation of m(h) on half

model levels computed as

m
h

� �
l
5
p

l11
2p

l

h
l11

2h
l

. (57)

The terms =f, D3, and v further include vertical

operators and are hence affected by the choice of ver-

tical discretization. The total divergence and the geo-

potential horizontal gradient are discretized from their

continuous definitions (8) and (9) as

D
3
5D2

p

mRT
T
d
� gw2=fD

p
� V

� 	
, (58)

=f5=f
s
1 I1h � =

�
mRT

p

�
, (59)

and, finally, the total time derivative of the hydrostatic

pressure is discretized from (7) as

v5V � =p2 Ih0 � (= � (mV)) . (60)

To calculate the advection of w in (56), we need to

evaluate w at half model levels using the definition (32)

through

w52
1

g
T
w

�
 
m

RT

p
d2=fD

p
� V
!

(61)

and use the standard interpolation procedure applied in

the semi-Lagrangian advection scheme.

It was shown in Guerra and Ullrich (2016) that un-

staggered FE method results possess highly oscillatory

stationary computational modes that pollute the solution.

Let us mention that FE operators Dd and Iw could be

defined instead of Td and Tw , keeping staggering of

variables in the vertical. In such case, Dd gives values on

full model levels when applied on half model level

variables and Iw gives values on half model levels

when applied on full model level variables. To avoid

artificial forcing coming from transformations of vertical

velocity w to vertical divergence d and vice versa, the

operators Dd and Iw have to be the inverse of each other

according to
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f5D
d
� I

w
� f , (62)

f5 I
w

� D
d
� f , (63)

for each discrete function f. Our attempt to define such

operators unfortunately resulted in noisy solutions of

the basic tests described in the next section.

6. Sensitivity in idealized experiments

A set of test cases has been run in the 2D vertical

plane version of the ALADIN system, including the

nonlinear nonhydrostatic flow over idealized orography

according to Bubnová et al. (1995) and the density cur-

rent test published in Straka et al. (1993).

a. Nonlinear nonhydrostatic flow

First, we examine flows with a constant uniform ve-

locity U5 4m s21 in the x direction in a dry atmosphere

with the temperature profile determined by a constant

Brunt–Väisälä frequency N5 0:01 s21 and the bottom

temperature T0 5 285K over a bell-shaped mountain

characterized by its height H and its half-width a. The

surface geopotential is defined by

F
s
(x)5 gH

a2

a2 1 x2
. (64)

We setH5 a5 400m5 5Dx. We have 384 grid points

in the x direction with Dx5 80m. We use 140 regularly

spaced vertical model levels with Dz5 180m. An addi-

tional 10 levels are placed at the top of the model do-

main to allow a smooth transition up to the model

top defined by p5 0Pa. The top 20 levels are kept

isothermal with a temperature of 102K.We use the time

step dt5 4 s and integrate up to 5000 s. The semi-implicit

two time level time stepping (Hortal 2002) is applied,

without any artificial dissipation algorithm like sponge,

diffusion, or time decentering. The results for the vertical

velocity field for the twovertical discretizations, FD and FE

with cubic B splines, are shown in Fig. 4. Both results

are in good agreement not showing signs of apparent

instability.

b. Density current

We apply the same initial configuration as in Straka

et al. (1993) for comparison. We first run the reference

experiment with high horizontal and vertical spatial

resolution Dx5Dz5 25m and with a short time step of

0:1 s. Then two sets of runs are prepared with a longer

time step of 2 s. The first one has the same horizontal and

vertical resolution as the reference experiment, and the

second one uses the coarser horizontal and vertical

resolution of 50m. Other parameters are kept from the

reference solution. The horizontal domain length is

51:2 km. In the vertical, the model levels are placed

regularly up to 4 km and then there is a transition zone of

40 model levels with a smoothly increasing vertical res-

olution up to 25 km. The top seven levels are set to be

isothermal. To initiate a density current, the tempera-

ture field is specified as a sum of the background value

calculated from the constant potential temperature

u0 5 300K and a temperature perturbation T 0(x, z)
symmetric around a central point (xc, zc) with a max-

imum value of T0 5 15K according to the following

definition:

T(x, z)5 u
0

p
s

p
0

� �R/Cp

1T 0(x, z),

where the perturbation temperature is defined as

T 0(x, z)5
�
0 for L. 1

T
0
[cos(pL)1 1]/2 for L# 1

with

FIG. 4. Vertical velocity at time 5000 s for the nonlinear moun-

tain wave. The contour interval is 0:2m s21. The results are shown

for (top) the FE vertical discretization and (bottom) the FD ver-

tical discretization.
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L5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
x2 x

c

x
r

�2

1

�
z2 z

c

z
r

�2
s

,

andp0 5 1000 hPa, xc 5 2560m, xr 5 4000m, zc 5 3000m,

and zr 5 2000m. The semi-implicit two time level time

stepping is applied. Periodic boundary conditions are

imposed in the horizontal direction. The results of the

described experiments with the two vertical discretiza-

tions used are shown in Fig. 5. The plotted field is the

potential temperature at time 600 s. Only a part of the

right half of the domain is depicted.

All basic features of the solution are kept by both

methods. Compared with the reference solution, the

details are better captured by the FE method. For a grid

spacing of 25m (Figs. 5b,c) the FEmethod gives a better

shape of all the rotors than the FD method, and for a

grid spacing of 50m (Figs. 5d,e) the depth of the rotors is

better resolved by the FE than the FD method. All re-

sults are in good agreement with the results shown in

Fig. 1 of Straka et al. (1993).

7. Sensitivity in real-case experiments

Two series of forecasts starting from the ALARO1

analysis at 0000 UTC were run in 2-km horizontal res-

olution over the central Europe domain centered above

the Czech Republic and partially covering the Alps (see

Fig. 6) with 87 Czech operational vertical levels. One set

starts from 28 May 2016 and continues to 6 June 2016

with convection events present frequently during the

day over the majority of the domain. The second set

covers the time period starting from 21 October to

30 October 2017. The conditions were stable with very

strong wind occurring on 29 October 2017 with wind

gusts exceeding 45m s21. The forecast integration

range is 24 h with a 1-h coupling interval, the lat-

eral boundary information is provided by the Czech

operational suite of ALARO at 4.7-km horizontal

resolution. We use two time level iterative centered-

implicit time schemes with one iteration and the

time step of 72 s. As a parameterization package,

the ALARO physics is employed as described in

Termonia et al. (2018), with the Modular Multiscale

Microphysics and Transport (3MT) moist deep con-

vection scheme overcoming the problem of partially

resolved deep cumulus, with the radiation scheme

Actif Calcul de Rayonnement et Nébulosité, version 2

(ACRANEB) and with the turbulence model II of

Third Order moments Unified Condensation And

N-dependent Solver (TOUCANS).

No sign of instability is apparent in any of the exper-

iments. The iterative semi-implicit solver converges as

indicated by the spectral radius test of the iteration

matrix calculated in the setup part of the integration.

Objective scores of the results with 1 iteration and with

10 iterations coincide in all parameters except for the

FIG. 5. The potential temperature field at time 600 s of the Straka

test, the contour interval is 1K. (a) The reference FD, (b) FE with

a spatial resolution of 25m, (c) FDwith a spatial resolution of 25m,

(d) FE with a spatial resolution of 50m, and (e) FD with a spatial

resolution of 50m. The time step in the reference solution is 0.1 s,

and in all other experiments it is 2 s.

1 ALARO is the canonical model configuration of the ALADIN

system, as described in Termonia et al. (2018).
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time evolution of the bias for precipitation cumulated

for 24 h in the autumnal series, where a small advantage

of further iterations may be observed. We conclude that

one iteration of the semi-implicit solver is enough for an

accurate solution.

Furthermore, objective score characteristics are neutral

to the change of vertical discretization (from FD to FE).

The phenomenon that can be identified in the results is an

interaction of the vertical discretization with the resolved

convection. Just for providing an example, the pre-

cipitation cumulated for 3h between 1100 and 1400UTC is

shown in Fig. 7 for the integration starting at 0000 UTC

1 June 2016. The maxima are decreased slightly with FE

discretization, which corresponds better to observations.

The computational performance depends heavily on

the computational platform used. The 3D experiments for

this paper were run on NEC LX series HPC cluster with

320 computing nodes, with each node based on two Intel

Broadwell CPUs. For any configuration, the FEmethod is

more expensive then the FD method. The computational

overhead of the FE method depends nevertheless on the

used hybrid parallelization (MPI-OpenMP), nodes usage,

and on the cash-blocking mechanism realized through the

cash-blocking length parameter. We show in Table 3 the

average CPU time needed for one time step of the whole

model integration for several cash-blocking lengths. The

results obtained are dependent on other computer device

parameters as well and the conclusions on the CPU time

consumption are only illustrative.

The average CPU time overhead of the FE method

over the FD method was calculated using the average

CPU time per one time step. Without iteration of the

Helmholtz solver, the overhead comes from the matrix

multiplication employed in the FE method in place of

the difference and division operations used in the FD

method. It depends on the matrix multiplication code

efficiency. We use FORTRAN routine DGEMM from

the Lapack library for matrix multiplication. The mag-

nitude of this overhead is 5%–8%.Moreover, there is an

overhead of needed CPU time for the FE method

coming from different methods used in the Helmholtz

solver and depending on the number of iterations of this

solver. The magnitude of this overhead is about 1%–2%

FIG. 6. Orography in real experiments. The blue rectangle denotes

the domain for cumulated precipitation shown in Fig. 7.

FIG. 7. Estimation of precipitation cumulated at 1100–1400 UTC

1 Jun 2016 over the Czech republic territory. (top) Combined in-

formation from radars and point rain gauges and the corresponding

precipitation field forecasted by the ALARO simulation with the

vertical discretization realized (middle) through FE and (bottom)

through FD. Only one iteration of the semi-implicit solver is ap-

plied in both cases.
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per iteration (one iteration is enough to reach satisfac-

tory results).

The overall CPU time needed is thus increased by

8%–9% when the FE method is used (the last column in

Table 3 denoted ‘‘0 1 1’’) depending on the parallelization

(MPI-OpenMP) and the optimization method applied. The

important fact is that the CPU time needed is independent of

the order of B splines used as basis functions. On the other

hand, increasing the order of the FD vertical discretization

would lead to the increase in CPU time consumption.

8. Summary and discussion

We describe in this work a finite-element vertical

discretization used in the nonhydrostatic fully com-

pressible dynamical core of the ALADIN system, which

is general in the order of used B splines. The described

method is an extension and generalization of the FE

method implemented for the vertical discretization of

the hydrostatic dynamical core of the ALADIN system

and of ARPEGE/IFS global weather prediction system

described in Untch and Hortal (2004).

The treatment of boundary conditions was changed

with respect to the FE implementation in the hydrostatic

core of the ALADIN system. We have included, in the

definition of the FE operators, a set of linear boundary

conditions that are applied to the input and output func-

tions. We found out that the boundary conditions are

crucial to achieve satisfactory stability properties. Never-

theless, the conditions imposed on the input and output

functions are fully compatible with physical criteria valid

for the corresponding meteorological variable.

In addition, compared to FD spectral space compu-

tations, we have implemented a stationary iterative so-

lution of the Helmholtz structure equation. The proposed

method appears to be convergent and it was shown that

one iteration provides sufficient accuracy.

We performed a set of standard idealized tests, like

the density current Straka test and various flow re-

gimes over a bell-shaped mountain. These experiments

proved the satisfactory accuracy properties of the

proposed FE discretization, and they showed that the

nonhydrostatic dynamical core remains as stable as it is

with the FD discretization used in the vertical when

semi-implicit time stepping is applied. Moreover, 3D

diabatic experiments were performed with a 2-km model

horizontal resolution over the central Europe domain

partially covering the Alps. The objective scores were

neutral to the change of vertical discretization in all tested

cases. A slight shift of the precipitation amounts to lower

intensities was observed with the FE method used, espe-

cially in the summer period.

The stability properties of the NH dynamical core

require us to keep vertical staggering of the model var-

iables for FE discretization. Hence, unlike all the other

prognostic variables, the vertical velocityw is defined on

the half model levels. The vertical derivative of w then

requires an application of a staggered FE operator. This

requirement limits the theoretical accuracy of the pro-

posed FE method, because staggered FE operators are

not superconvergent. Moreover, the transformations

betweenw and the vertical divergence variable d needed

in the implicit calculations keep the FD approach. This

may again limit the possible overall accuracy of the

model. This is left for further investigation.

We have implemented the FE method with the gen-

eral order of B splines. So far all tests were restricted

to the cubic B splines only. Nevertheless, we plan to

study the influence of the B-spline order on the accuracy

and the time stepping stability of the whole system.
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APPENDIX A

Construction of B-Spline Basis Functions

In this appendix we explain how the B-spline basis

functions are constructed. The goal is to construct a

B-spline basis function ak(h) that, optionally, satisfies

some linear boundary properties.

The input information is the order C of the B splines

(C5 4 for cubic splines), the numberB of linear boundary

conditions (B5 0 if no conditions are imposed), and the

values of the functions A(h) and B(h) at the L full model

levels, that is, Ak and Bk for k5 1, 2, . . . , L.

First, we define the value of the vertical coordinate

h at full model levels as follows:

h
k
5

A
k

p
s
*
1B

k
, (A1)

where ps* is the reference hydrostatic pressure on the

surface. Observe that h5 0 at the top of the atmosphere,

in the limit that pressure tends to zero, and h5 1 on

the surface.

We must define some h points, referred to as the

knots, which may be different from the h values at the

full model levels. However, once the distribution of

the full model levels is given, the choice of knots is not

arbitrary, because B-spline basis functions must be dis-

tributed in such a way that there is at least one full model

level in the support of each B-spline function. Once the

knots are set, the B-spline basis functions are constructed

from them using de Boor’s algorithm (de Boor 1978).

The number of knots is L1B1C. They are defined as

follows: there is one knot at h5 0 with multiplicity C, and

one other knot at h5 1 with the same multiplicity. The

other L1B2C knots are placed at full model levels,

removing, if needed, the outermost knots. For instance, if

C5 4,B5 0, andL5 7 we set the 11knots as (0, 0, 0, 0,h3,

h4, h5, 1, 1, 1, 1). If we impose three boundary conditions,

B5 3 and 14knots are set as (0, 0, 0, 0,h2,h3,h4,h5,h6,h7,

1, 1, 1, 1). These examples are illustrated in Figure A1.

APPENDIX B

Iterative Procedure to Solve the Helmholtz Problem

The iterative procedure designed to solve theHelmholtz

problem when elimination of all the prognostic variables

but one (namely d) is not possible was described in Yessad

(2006). The linear system to be solved in the spectral space

in this case can be written in the following way:

FIG. A1. A different basis for seven vertical model levels. Black dots denote

vertical h levels, while squares indicate positions of knots. The thickness of lines

differs for individual basis functions to better distinguish between them. (left) No

boundary conditions applied and (right) three boundary conditions applied im-

plicitly: ai(0)5 0 for the top and ai(1)5 a0i(1)5 0 for the bottom, i5 1, 2, . . . , 7.
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�
A1C B

F E

��
D

d

�
5

�
R

D

R
d

�
, (B1)

where RD and Rd describe the right-hand side of the

linearized prognostic equations for D and d, re-

spectively, and where several matrix operators have

been defined as follows to simplify the notation:

A5 (12 dt2c2D)I ,

B5 dt2D RT*G2 c2I
� �

,

C5 dt2DRT*C
1
,

E5 I2
dt2c2

rH2
L ,

F5
dt2

rH2
L RT*S2 c2I
� �

.

Here dt is the time step, c2 5RT*(Cp/Cy) andH5RT*/g

are constants, D is the Laplacian operator, I is the

identity matrix, and C1 represents the constraint C1:

C
1
52G � S1G1S2N .

Then C is zero for FD operators defined in Bubnová
et al. (1995), and has a small but not zero spectral radius

for FE operators defined here. To precondition this

system, we multiply (B1) by�
I 0

2F A

�
, (B2)

where 0 is the all-zeros matrix. We solve the following

system:�
A1C B

2F �C H

��
D

d

�
5

�
I 0

2F A

��
R

D

R
d

�
, (B3)

where H5A � E2F � B and F � A5A � F . The lin-

ear system (B3) is in the following form:

M �
�
D

d

�
5R , (B4)

where

M5

�
A1C B

2F �C H

�
, (B5)

and

R5

�
I 0

2F A

��
R

D

R
d

�
. (B6)

To apply an iterative and efficient method for solving

(B4), we split the left-hand side matrixM into two terms,

only the first of them containing C, which, as already

mentioned, has a small spectral radius:

M5M
1
1M

2
5

�
C 0

2F � C 0

�
1

�
A B

0 H

�
. (B7)

Observe that matrix M1 inherits the small spectral

radius from C, which is a property that is convenient to

speed up the following iterative procedure of solving

(B4):�
D

d

�(0)

5 M21
2 � R ,�

D

d

�(k11)

5 2M21
2 �M

1
�
�
D

d

�(k)

1M21
2 �R . (B8)

Recently, Voitus (2017) noticed that when eliminat-

ing all variables but D, we obtain the Helmholtz

equation:�
A1C2B � E21 � F

	
�D5R

D
2B � E21 �R

d
.

This may be solved directly even if C 6¼ 0. Hence, we

may get rid of the iterative procedure described here

and slightly fasten the calculations.

APPENDIX C

Definition of Full-Level Positions and Layer Depths

Vertical discretization in the FD scheme is

based on implicit definition of half-level hydro-

static pressures:

p~l
5A~l

1B~l
p

s
. (C1)

The half-level valuesA~l and B~l are specified a priori and

the values at the domain top are A~0 5B~0 5 0 and at the

surface they are A ~L 5 0 and B ~L 5 1.

The FE scheme discretization is based on derivative

form of (C1) (Untch and Hortal 2004):

dp
l
5 dA

l
1 dB

l
p

s
(C2)

and on the following two integral conditions:

I10 � dA
dh

5 0, (C3)

I10 � dB
dh

5 1, (C4)

with all quantities being on full model levels. The depth

of layer l is dhl 5h~l 2hel21
and the explicit half-level

h values are defined as
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h~l
5

A~l

p
0

1B~l
, (C5)

with constant reference pressure p0 5 101 325 Pa. The

full-level h values are calculated as averages through

h
l
5

1

2
hel21

1h~l

� �
. (C6)

The differences dAl and dBl are defined using the con-

ditions in (C3) and (C4). The first guess is computed

from the following half-level quantities:

ddA
l
5A~l

2Ael21
, (C7)ddB

l
5B~l

2Bel21
. (C8)

To fulfill (C4) the normalized difference dBl is calcu-

lated as

dB
l
5

cdB
l

I10 �
cdB
dh

. (C9)

The condition in (C3) can be rewritten into the

following form:

I10 � 1

p
0

dA

dh
1 J

� �
5 1 (C10)

taking into account that I10 J5 1 for the all-ones vector J.

The differences dAl are then computed from the fol-

lowing relation:

1

p
0

dA
l

dh
l

1 15
1

b

 
1

p
0

cdA
l

dh
l

1 1

!
, (C11)

with constant b computed from the guess as follows:

b5 I10 �
 

1

p
0

cdA
dh

1 J

!
. (C12)

Having correct values of full-level differences from (C2)

the full-level Al and Bl are computed through

Ih0 � dA
dh

5A , (C13)

Ih0 � dB
dh

5B . (C14)

When using prognostic gw on half levels we need also

the half-level fdA/dh and fdB/dh to evaluate mh in (56).

These values are computed from the spline fit of full-

level values used implicitly inside Ih0 operator.We design

interpolation operator omitting mass and stiffness

matrices in (27) as

T5A
h
� A21 , (C15)

with (A)kl 5 ak(hl) as in (16), and (Ah)k~l5 ak(h~l) being

projections from FE space to full model levels and to

half model levels, respectively. The set of basis functions

ak(h) and the boundary conditions are the same as used

for Ih0 in Table 1. The half-level differences of A and B

yields the following:

fdA
dh

5T � dA
dh

, (C16)

fdB
dh

5T � dB
dh

. (C17)
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