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Turbulent motions developed in stably stratified atmospheric boundary layers with gravity wave activity show distinctive features T -g = 5 g " % e
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« SABLES2006 field campaign was carried out on a relatively flat and homogeneous terrain over an extensive high plain in the $ ° . "‘%’" é q:; g S
northern part of the Iberian Peninsula 1 (See poster A335, this session, for site characteristics). = -0.002 T © S
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fluxes if the eddy
covariance method with a
fixed averaging length is

used (example).
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4 * Wave-related motions at large timescales (>100s) have
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Detected on June 26 at 0230GMT. A gravity wave

B moves downward from z>100m to about z=20m.
Interaction with local stratification is complex; the wave

excites oscillations which are present simultaneously at |

different levels but different variables (Wy; 51y 719 6m)- T

Strong mesoscale ducted gravity wave.

Detected on July, 12, from 0230 to 0430 GMT. Periodic
veerings of wind direction (NE-SW), very well correlated
C wind, temperature and pressure fluctuations.

» A proper evaluation of turbulent fluxes <u’'w’> and <w’6’> (integrating MR cospectra up to the spectral gap) Is crucial.

* As a general result, waves overlap, to a greater or lesser extent, with the spectra of turbulent motions.
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* If no spectral gap can be identified, uncertainty in the evaluation of <u'w’™> and < w’é> increases (and thus, in K, and K,).
This effect iIs more important in strong stablility conditions where waves develop, because turbulent fluxes tend to be very small).
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