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ABSTRACT:

The homogenization of climate observational series is a needed process before undertaking 
confidently any study of their internal variability, since changes in the observation methods or in the
surroundings of the observatories, for instance, can introduce biases in the data of the same order of 
magnitude than the underlying climate variations and trends. Many methods have been proposed in 
the past to remove the unwanted perturbations from the climatic series, and some of them have been
implemented in software packages freely available from the Internet. The Spanish project 
MULTITEST was intended to test their performance in an automatic way with synthetic monthly 
series of air temperature and atmospheric precipitation, in order to update inter-comparison results 
from former projects, especially those of the COST Action ES0601. Several networks representing 
different climates and station densities were used to test a variety of homogenization packages on 
hundreds of random samples. Results were evaluated mainly in form of Root Mean Squared Errors 
(RMSE) and errors in the trend of the series, showing that ACMANT, followed by Climatol, 
minimized these errors. However, other packages performed also relatively well, even 
outperforming them when there were simultaneous biases of the same sign in most or all the test 
series.
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1. Introduction

Observational series are very important pieces of information to know local climates and their 
variability, but they are frequently affected by changes in the observing practices, instrumentation 
or in the environment of the observing site which often introduce biases in the measurements that 
mask or distort true climate variations. Therefore, climate series must be subjected to quality control
and homogenization procedures to identify and remove any artifacts and guarantee that the 
variability in the resultant series is only driven by weather and climate changes (Conrad and 
Pollack, 1950; Aguilar et al., 2003; Hunziker et al., 2018).
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Many methods have been developed over time to detect these inhomogeneities, either in form of 
abrupt changes (break-points) or as short-term gradual drifts (artificial trends). Comprehensive 
reviews of them have been published by Peterson et al. (1998), Aguilar et al. (2003), Ribeiro et al. 
(2016), WMO (2020) and Domonkos et al. (2022), but it is difficult to assess their relative 
performance with real series because the correct solution is unknown (Venema et al., 2012; Mamara
et al., 2013; Coll et al., 2020). Conformation of results with metadata is often used for the 
assessment of the reliability of homogenization results, but our experience shows that metadata are 
often absent or incomplete, and not all events in the history of the observatories must necessarily 
produce significant biases in the series. Hence there is a need of implementing benchmarking 
approaches where known inhomogeneities are added to synthetic homogeneous series, and they can 
serve to measure the quality of the solutions returned by the tested methods. There have been 
several studies on the efficiency of some homogenization methods applied to simulated temperature
series (Caussinus and Mestre, 2004; Menne and Williams, 2005; Domonkos, 2011). However, the 
most important effort undertaken before the MULTITEST project was done in the frame of the 
Action ES0601 "Advances in Homogenization Methods of Climate Series: An Integrated 
Approach" (alias "HOME"), funded by the COST office of the European Cooperation in Science 
and Technology, in which scientists from over 20 countries gathered periodically during 2006-2011 
to compare and discuss their methodologies (Venema et al., 2012).

However, although many methods have been improving along time, repeating that inter-comparison
exercise in the same way as in the HOME project is impractical because of the huge work involved.
To partially infill this gap, the Spanish project MULTITEST (https://climatol.eu/MULTITEST/) 
was dedicated to compare performances of the latest versions of the publicly available 
homogenization software packages which can be run in automatic mode. This condition is 
necessary to facilitate the comparison of the benchmarking results when applied to many hundreds 
of simulated monthly datasets with many different characteristics following a Monte Carlo 
approach. This paper presents the main results reached from a unified methodology of numerical 
experiments in which the test series were affected by different kinds of inhomogeneities. Some late 
experiments of the MULTITEST project, in which 12 synthetic and surrogate temperature test 
datasets were used, were published in a separate paper (Domonkos et al., 2021).

Section 2 of this article explains the methodology used to apply and evaluate the homogenization 
software packages (often referred to as simply “packages” here) on the different benchmark 
datasets. Section 3 presents the results, which are subsequently discussed in section 4, followed by 
the conclusions in section 5.

2. Methodology

Several synthetic data-sets simulating homogeneous monthly series of atmospheric precipitation 
and air temperature with different characteristics were used as master networks from which random 
subsets could be drawn. Inhomogeneities were inserted in these sampled subsets, which were then 
homogenized by means of the homogenization software packages to be tested. These tests were 
repeated 100 times for each master network, package and type of homogenization problem, hence 
allowing the production of multiple homogenization results from each software, which were then 
compared with the original homogeneous test series to evaluate the method performances. 
Networks of 10 time series were used in most homogenization experiments, but the influence of the 
network size was also assessed with networks of 20, 40 and 80 series. R scripts (R Core Team, 
2018) were programmed to automatize all the processing tasks, and the generation of pseudo-
random numbers was reset before every test run to ensure that the problem series were the same for 
all tested packages.



The generation of synthetic master networks is based on earlier studies (Guijarro, 2011). Their 
characteristics, types of inhomogeneities introduced and tested homogenization packages details are
presented in the following sub-sections.

2.1. Generation of the master networks

2.1.1. Precipitation

Three synthetic precipitation networks of 100 series of 720 monthly values (equivalent to 60 years 
of data) were generated simulating Atlantic temperate, Mediterranean and monsoonal climates. Real
series from Ireland (198) and Majorca (107), and gridded series from Southwestern India (64) 
drawn from the Global Precipitation Climate Center at 0.5° resolution (Schneider et al., 2015) were 
used, respectively, as models of each type of climate. These series were homogenized and 
completed with Climatol 3.0 (Guijarro, 2016).

The statistical properties and correlation structure of these series were determined with the help of 
several functions of the R package “gstat” (Pebesma, 2019). After a data gaussianization and 
randomized treatment of zero values, the “variogram” function was used to obtain a spheric 
variogram for every dataset. These variograms served to obtain random gaussian values by means 
of the function “krige”, as well as estimations of the precipitation gamma parameters shape and 
scale through kriging of log-transformed data. The probability of zeros were assigned by inverse 
distance weight interpolation, and the effect of elevation on the scale parameter was accounted for 
by log-regression. Synthetic series were then produced using these parameters , which allowed the 
preservation of realistic spatial correlation structures in these three master precipitation networks 
(López et al., 2016). As the original series were only used to extract their statistical properties, the 
method applied to homogenize them is not expected to favor any benchmarking results.

It is clear that the three chosen areas may not be the best representatives of the intended climates, 
which have important variations depending on the geographical area. However, they suffice for our 
purpose of trying the homogenization packages with three different pluviometric regimes. Also the 
recourse to gridded data, due to not having found observational series from India at the time of data 
collection, may have altered the proportion of months with zero precipitation, but the 22 % 
occurrence in the gridded series seemed a good proportion for deriving the simulated tropical-
monsoonal dataset.

Figure 1 shows the average monthly precipitation of the three climates and the correlation-distance 
scatter-plots of these master networks with correlations calculated on the first differences of the 
series.

2.1.2. Temperature

Three master networks of 100 series containing 720 monthly values of average temperature were 
also generated, this time with a simpler methodology. Random locations were assigned to 100 
points in a 4x3° longitude-latitude geographic domain. The monthly mean temperature series of 
Valladolid station (Duero basin, Spain) for the period 1951-2010 was assigned to the first point, 
located near the center of the domain. This series was chosen because of i: its completeness in that 
period; ii: being representative of a mid-latitude site with a marked seasonal cycle; and iii: it was 
found homogeneous in a previous study (Guijarro, 2013), although this is irrelevant for relative 
homogenization when the rest of the series share the same long term variability. The same series 
plus white noise, multiplied by a constant factor C, was assigned to the closest point. This 
procedure was repeated for all the remaining points, always adding noise to the closest series 
available. Three master networks characterized by markedly differing cross correlation structures 
were generated by using different C factors (0.18, 0.30 and 0.65), which are referred to as Tm1, 
Tm2 and Tm3, respectively.



Figure 1. Average monthly precipitations of the three climates analyzed (a) and correlation-distance
scatter-plots of these networks (b) calculated with the first differences of the series.

Finally, the amplitudes of their seasonal cycles were randomly varied up to ±20 % and, although 
irrelevant for relative homogenization, series were biased up to ±0,975 °C to simulate elevation 
differences of up to -/+150 m, and a 2 °C/century trend was added to all of them.

Additionally, a fourth master network, named Tr2, was built by the same procedure (with C=0.30) 
but using a complete synthetic series of the HOME benchmark as initial seed. This network, 
containing 1200 monthly data (100 years), was used to check the performance of the packages in 
conditions like those experimented in the HOME project. Figure 2 shows the correlation-distance 
scatter-plots of the aforementioned four master networks with correlations calculated on the first 
differences of the series.

2.2. Inserting inhomogeneities

Different kinds of inhomogeneities with increasing level of difficulty were added to each sample of 
the master networks to create the problem series on which the homogenization methods are tested. 
The last five years of the series (ten in the first three temperature experiments) were always kept 
untouched to allow finding reliable adjustments for inhomogeneities from the last homogeneous 
sub-period backwards. 

2.2.1 Precipitation biases

Breaks (i.e. sudden shifts in the means) were inserted into the homogeneous series of the three 
master networks at randomly selected positions in any of the ten series of every sample, with a 
mean frequency of 1 per 20 years. The original values between two consecutive breaks were biased 
by multiplying them by a factor randomly drawn from a normal distribution with mean 1.0 and 
standard deviation 0.2 (equivalent to a variation of ±20% in precipitation). This factor was applied 
to all data in the series, without varying it seasonally.

No more variations of the testing procedure were done on the precipitation databases. However, we 
believe that many of the lessons derived from the much more extended variety of inhomogeneity 
problems tested on the synthetic temperature networks can be applied also to the homogenization of
precipitation series.



Figure 2. Correlation-distance scatterplots of the four master networks Tm1 (a), Tm2 (b), Tm3 (c) 
and Tr2 (d) of monthly temperature with correlations calculated on the first differences of the series.

2.2.2 Temperature biases

Tests with temperature datasets were performed in three rounds. In the first round, five experiments 
were performed with samples of 10 series by setting increasing degrees of difficulty. Big biases 
were inserted in the first three experiments in order to test the inhomogeneity correction ability of 
the packages when all the break-points can be easily detected, while biases of random size were 
introduced in the other two experiments. More precisely, the inhomogeneities applied to these first 
five experiments were (see examples in Figure 3):

1) Two shifts of 2 °C were imposed to the first three series at fixed positions, and one shift of the 
same magnitude was applied at random locations to series 4 and 5. No modification was done on 
the last five series, which remained as homogeneous references.

2) As in (1), but with shifts of 1.5 and 2 °C affected by a strong sinusoidal seasonality calculated 
from cos((x-7.16)*2*π/12), where x is the ordinal number of the values of the series. Seasonality in 
the inhomogeneities is expected to be caused by the different intensity of radiation fluxes along the 
year. The phase of the seasonal cycle chosen here corresponds to the phase of the seasonality of 
maximum average temperatures in the same area around the Valladolid station taken here as model 
for the generation of the synthetic temperature networks (Guijarro, 2011).



Figure 3. Examples of shifts applied to obtain the problem series in the first five temperature 
experiments: (a) One or two large shifts in the first five series; (b) the same as (a) but with an added
strong sinusoidal seasonal variation; (c) large-size short-term biases and local trends in the first five 
series; (d) random number of biases of random magnitude and location in all 10 series;  (e) the same
as (d) but with sinusoidal seasonal variation of random amplitude.

3) Combinations of "short term platforms" (biases of small duration) and local trends 
(increments/decrements of 2 °C over short periods) were applied to the first five series of the 
samples.

4) A random number of shifts with random size and location was applied to any of the 10 series. 
The number of shifts was drawn from a binomial distribution with an average frequency of 5 per 
100 years. Shift sizes were taken from a normal distribution with zero mean and one standard 
deviation.

5) As in (4) but with an added sinusoidal seasonality calculated as in (2). Shift values were then 
multiplied by 0.7 to compensate the increased deviations induced by the addition of the seasonal 
variation.

The second round of tests was done with the Tm2 master network to assess the performance of the 
methods with different seasonality shapes (two sinusoidal cycles per year and a squared seasonality 
consisting in an abrupt rise and ulterior sudden decrease to simulate potential effects in tropical 
savanna climates with a wet and a dry season), increasing network sizes (20, 40 and 80 series), 
nearly simultaneous shifts in 40, 70 and 100% of the series and networks of 40 series with many 
missing data.



In the third round, the methods were tested on networks of 40 series of 100 years length, from 
which data were deleted at the beginning of time series, around 1945 (simulating the lack of 
observations caused in Europe by World War II) and at random short spells elsewhere (see data 
availability in Figure 4). The number of shifts was 5 per century on average, and a sinusoidal 
variation of the biases with random amplitude was introduced with randomly located maximums 
between June and August.

Figure 4. Data availability after a partial deletion in one of the samples of 40 series extracted from
the master network Tr2. (a) Blue segments indicate the presence of data. (b) Total data availability
along time. The last four series are free from missing data to ensure available references to infill the
gaps present in the other series.

2.3. Tested homogenization packages

The tested homogenization packages were chosen among those more used in the literature, with the 
requirements that they should be freely available and able to be run automatically without any 
human intervention. Some of them could be tested in several ways, while others had only one mode 
of operation. In addition, the individual packages needed different implementations to run them in a
uniform computer environment (a Linux PC by means of R and bash scripts). The list of tested 
packages and their running characteristics are as follows:

 ACMANT 4.3 (Domonkos, 2015 and 2020; Domonkos and Coll, 2017), in its versions for 
temperature (sinusoidal and irregular seasonality) and precipitation. These programs are 
MS-DOS executables, but can be run in Linux by means of the wine application (an API that
allows Linux to run programs compiled for MS-Windows) in a rather straightforward way.

 Climatol 3.1 (Guijarro, 2016), with constant and variable corrections. Cubic root and 
logarithmic transformations were tested on the precipitation series. Written in R, no 
adaptation was needed.

 HOMER 2.6 (Mestre et al., 2013) was the software outcome of HOME, but it could not be 
tested during that project. It is also written in R, but it is expected to be run interactively. 
Answers to the questions output by the program were redirected from a file, but this 
procedure only worked when these answers were supplied by means of the utility expect, 
simulating human intervention.

 MASH 3.03 (Szentimrey, 1999 and 2008) is a set of MS-DOS executables and batch scripts.
The Manual of MASH specifies the required sequence of running programs for an 
unattended run, but the automatic connection between those programs is incomplete in the 



package. Therefore, running MASH either needs manual interventions on the running 
process, or script editions before running.  We did the necessary script editions to run 
MASH under Linux. The software functioned correctly, but with a too high computational 
time demand. Therefore, the running scripts had to be simplified by skipping the monthly 
adjustments and only results with yearly constant corrections are presented in this paper.

 RHtestsV4 (Wang, 2008; Wang and Feng, 2013) was applied in absolute and relative 
homogenization modes, both with and without quantile adjustment. This package is written 
in R, and therefore could be run without any adaptation. The problem in this case was that 
this software is designed to be applied to individual series, and it is the user who must 
provide a homogeneous reference series to perform a relative homogenization. Therefore, 
these tests were automated by using the closest homogeneous series as reference series in the
first three temperature experiments, and the mean of all series in the other experiments.

 PHA v52d (Menne and Williams, 2005) implements a Pairwise Homogenization Algorithm 
which was developed for the homogenization of the temperature dataset of the United States 
Historical Climatology Network (USHCN). This package is available as Fortran sources 
(NCDC, 2012) which must be compiled, a process far from trivial because it depends on 
particular versions of Linux libraries. The version tested here is a bit outdated, but efforts to 
compile newer sources were unsuccessful or gave run-time errors. Sometimes this package 
did not infill missing data, returning the -9999 code instead. In these cases, those codes were
substituted by their corresponding raw data.

In testing the packages, we had to tackle with some running errors: For instance, RHtests returned 
an error condition when no inhomogeneity was found in the tested series. In these cases, the 
problem series were taken as returned solutions. This strategy was generalized to all the methods 
whenever they failed to provide results. However, HOMER sometimes stopped with an 
irrecoverable error, yielding incomplete sets of solutions not readily comparable with those of the 
other methods.

2.4. Evaluation metrics

All tested packages were required to return homogenized solutions from each of the hundreds of 
inhomogeneous samples provided. These results were then compared with the homogeneous 
samples, calculating the Root Mean Squared Errors (RMSE) and the errors of the linear trends, 
means and standard deviations of the series. As the latter two metrics were not found to be relevant 
enough, only RMSE and trend errors will be discussed in this paper.

Having calculated these metrics hundreds of times, a convenient way of displaying them is with the 
use of box-whisker plots, which visualize both the more frequent values (the 50 % of data inside the
box) and their whole range, outliers included. However, to avoid an excessive number of figures, 
other results will be shown in tables, ranking the tested packages according to their RMSE 
averages.

3. Results

3.1. Precipitation

Box-plots in Figure 5 summarize the results of the homogenization packages for the tested 
precipitation networks. The settings of packages applied in precipitation homogenization are 
presented in Table 1, and the mean RMSE of the homogenized series are shown in Table 2 by the 
rank order of this statistic. Most methods correct the inhomogeneities substantially in the Atlantic 
temperate precipitation regime, but not so well in the other two climates, where improvements are 
more modest, when existing.



Figures 5. RMSE (left column: a, c, e; in mm) and trend errors (right column: b, d, f; in mm per 100
years) of the homogenization of the three precipitation networks: Atlantic temperate (top row: a, b),
Mediterranean (middle  row:  c,  d)  and Monsoonal  (bottom row:  e,  f).  (Fixed scale  for  a  better
comparison; outliers may lie outside the graphic limits.)



Table 1: Packages and settings tested on the three precipitation data-sets, with labels used in 
Figure 4 and Table 2.

Package Label Settings

None Inh (Inhomogeneous problem series)

Climatol

cl1

Cr1

Cl1

Normal ratio normalization of raw values (SNHT=15)

Full normalization of cubic root transformed values (SNHT=15)

Full normalization of log transformed values (SNHT=15)

ACMANT ACp Precipitation version

MASH MSH Multiplicative model and significance level of 0.01

RHTests

RHa

RHA

RHr

RHR

Absolute homogenization

Absolute homogenization with quantile adjustment

Relative homogenization

Relative homogenization with quantile adjustment

PHA US1 PHA method implemented for the USHCN data-set

HOMER

HoA

HoB

Pairwise detection, two rounds of joint detection/correction and month
of change assessment

HoA with an additional round of joint detection/correction

ACMANT scores first in all precipitation benchmarks, followed by the best settings of HOMER, 
Climatol, MASH and RHtests with little differences between the latter four methods. Although 
PHA was written to homogenize the USHCN temperature data-set, it could also improve the 
inhomogeneous precipitation series of the three simulated climates.

HOMER has a good performance with the two rounds of joint detection plus month assessment 
(HoA), but an additional round of joint detection (HoB) did not yield further improvement in their 
results.

Climatol only performs well with the normal ratio normalization of the raw values (cl1). The other 
two settings, in which data are transformed by a cubic root (Cr1) or a logarithmic function (Cl1) 
before being normalize with a full standardization (centering and scaling the data by their mean and 
standard deviation) produce much worse results. This is probably due to the amplification of errors 
produced when undoing the transformation through a cubic power or an exponential function 
respectively. Because of these results, the Climatol manual recommends not to use these options in 
the homogenization of variables with a highly skewed distribution of probabilities such as 
precipitation and wind (Guijarro, 2019). Due to the higher difficulty in the detection of 
inhomogeneities in precipitation series because of their high variability, the default threshold value 
of 25 for the Standard Normal Homogeneity Test (SNHT; Alexandersson, 1986) was lowered to 15 
in these tests.



Table 2: Rank of the RMSE averages (mm) in the three climates Atlantic, Mediterranean and 
Monsoonal, and in the mean of all three. Errors of the inhomogeneous (Inh) problem series are 
enhanced in bold characters.

Rank Atlantic Mediterranean Monsoonal Mean

1 ACp 7.24 ACp 7.46 ACp 10.43 ACp 8.38

2 RHr 9.64 cl1 9.05 HoA 11.39 HoA 10.39

3 cl1 9.68 HoA 9.27 MSH 11.61 HoB 10.41

4 HoB 10.07 HoB 9.33 HoB 11.83 cl1 10.45

5 HoA 10.51 MSH 9.39 cl1 12.62 MSH 10.82

6 MSH 11.46 RHr 9.48 RHr 13.74 RHr 10.95

7 US1 13.12 US1 11.27 Cr1 13.92 US1 12.89

8 Cr1 15.38 Cr1 11.78 US1 14.29 Cr1 13.69

9 Cl1 18.36 Inh 11.98 Inh 14.81 Inh 15.96

10 Inh 21.08 RHA 14.18 Cl1 16.29 Cl1 16.86

11 RHA 21.58 RHa 14.76 RHA 19.66 RHA 18.47

12 RHa 21.98 Cl1 15.93 RHa 20.69 RHa 19.14

13 RHR 21.98 RHR 38.15 RHR 54.59 RHR 38.24

MASH produced good results for all tested climates. Note that the lack of monthly correction 
implementation in our MASH scripts did not affect its results here, because no seasonality was 
introduced in the biases of the problem precipitation series. The sensitivity to detect 
inhomogeneities was also increased by using a significance level of 0.01.

RHtests gave good results when using reference series (relative homogenization mode, as in all the 
other tested methods) without quantile adjustment (RHr). RHtests absolute homogenization modes 
(RHa and RHA) were expected to produce bad results, but they were tested for confirmation. 
Quantile adjustments, when applied, worsened the results, especially in relative homogenization 
mode (RHR).

One of the expected benefits of homogenization is a greater spatial coherence of the long term 
trends of the series. Trend errors in Figure 5 (right column: b, d, f) show a clear reduction of the 
original error variability and unbiased mean trends in most of the homogenization results. The 
largest error reductions were achieved for the series of the Atlantic climate, with the exceptions of 
RHtests and HOMER. In addition, RHtests and HOMER sometimes produced notable systematic 
biases.



3.2. Temperature

As some settings of the packages differ according to climate variables, Table 3 lists them for 
temperature homogenization, updating the labels used in figures and tables when needed. These 
labels are common to all temperature benchmarking experiments, whose results are detailed in the 
following sub-sections.

Table 3: Packages and settings tested on the temperature benchmarking experiments, explaining the 
labels used in the related figures and tables.

Package Label Settings

None Inh (Inhomogeneous problem series)

Climatol

cl1

Cl1

Cl4

Centered raw values (no seasonality in the corrections)

Standardized raw values (seasonal variability in the corrections)

As Cl1, but using 30 additional short series

ACMANT

ACi

ACs

Ai4

As4

Irregular seasonal cycle of corrections

Sinusoidal seasonal cycle of corrections

As ACi, but using 30 additional short series

As ACs, but using 30 additional short series

MASH MSH Without seasonality in the corrections. 0.05 significance level

RHTests

RHa

RHA

RHr

RHR

Absolute homogenization

Absolute homogenization with quantile adjustment

Relative homogenization

Relative homogenization with quantile adjustment

PHA
US1

US4

PHA method implemented for the USHCN temperature data-set

As US1, but using 30 additional short series

HOMER

Hoa

Hob

Pairwise detection, two rounds of joint detection/correction and month
of change assessment

Hoa with an additional round of joint detection/correction

3.2.1. First five experiments

Figure 6 shows the boxplots summarizing the RMSE of the tested methods in the first five 
experiments for the benchmark with intermediate difficulty (Tm2, with good and fair cross-
correlations). The arrangement of panels (a) to (e) corresponds to that in Figure 3 for an easier 
interpretation.



Figure 6. RMSE (°C) of the homogenization of temperature benchmark Tm2 (with good and fair
cross-correlations) in the first five experiments, arranged as in Figure 3. (Fixed scale for a better
comparison; outliers may lie outside the graphic limits.)

The few big shifts of the first two experiments (Figure 6a and 6b) are well detected and corrected by
all relative homogenization methods. Even the absolute homogenization by RHtests  corrected the
series a bit, although this approach is discouraged (WMO, 2020). When the inhomogeneities have a
strong seasonal component (Figure  6b), methods or settings allowing a seasonal variation of the
corrections show substantially better performances. (As we could not test MASH with different
monthly corrections, this method is penalized in Figures 6b and 6e.)

The third experiment, with large-size short term platforms and local trends, also shows good 
performances of all relative homogenization methods (Figure 6c), although with some notable 
differences between them. The lower RMSE averages were achieved by ACMANT, MASH, 
Climatol and RHtests.

Experiments four and five (Figures 6d and 6e) allow the presence of a random number of biases 
with random size in any of the ten series of each random sample network. They are therefore the 
most realistic experiments so far, especially experiment 5, in which sinusoidal seasonal variations 
of shifts with random amplitude were included. This seasonality penalized PHA and our MASH 
implementation, which perform very well when biases do not vary along the year. Anyway, the 
overall picture still shows the usefulness of all relative homogenization methods, with some 
differences between them that can be appreciated in the figures. Also worth noting is that, in all five



experiments, Climatol with full standardization of the data (Cl1) performed better than when data 
were only centered (cl1), even when biases have no seasonality.

The fifth experiment was also tried with samples of 40 series, keeping the first 10 series untouched 
and deleting between 30 to 50 years (50 to 83.3% of the data) in the other 30. The objective of this 
variation was to explore the potential benefit of using short lived series normally present in real 
databases but generally disregarded in homogenization practice, which tends to focus on the more 
complete and long records. Yet short series contain climate information that may improve the 
reliability of the homogenization of the longer series, especially when they are in their vicinity. In 
the experiments presented here, only ACMANT, Climatol and PHA could tolerate the large amount 
of missing data in the 30 short series. Their mean RMSE in all tests are presented in Table 4, with 
labels cl4, Cl4, Acs4, Aci4 and US4 in bold italic characters, to distinguish them from the other 
tests results. ACMANT gave the lowest mean RMSE in almost all tests, followed by Climatol. 
When the 30 additional short series were included, Climatol results improved and reached the level 
of ACMANT. ACMANT and PHA tolerated well the presence of the additional short series, but 
they almost never improved their RMSE reduction results for the 10 complete series by the added 
information of short series.

The trend errors of relative homogenizations in these five experiments are generally very low (not 
shown) and unbiased in the first two experiments. In the experiment with short term platform and 
trend inhomogeneities, the remaining trend errors are strongly positively biased (except for the 
HOMER results, which exhibit a strong but negative bias), although much less than the trend errors 
of the inhomogeneous series. For the last two more realistic experiments of this round, trend errors 
are again unbiased except for HOMER (negative again). The overall picture is that most methods 
(with the clear exception of absolute homogenization) reduce the spread of the trends in time series 
without introducing spurious biases.

3.2.2. Second round of experiments: variation of seasonal cycle, network size and coincidental 
breaks

Other seasonality shapes of biases than simple sinusoidal cycles have been tested introducing biases
with double sinusoidal and squared cycles to the Tm2 master network. Table 5 compares the ranks 
and RMSE averages of these seasonality cycles with those of the simple sinusoidal results, 
suggesting that the shape of seasonality of biases has generally little impact on the rank order of the 
method performances. Again, settings that do not address differences in the corrections along the 
year appear penalized in the last places with higher errors, but only relative homogenization of 
RHtests or its quantile adjustment return greater errors than those in the problem series.

The remaining trend errors in the homogenized series are also similar for the cases of simple and 
double sinusoidal variation (not shown), but when biases have a squared seasonal variation, the 
biased trends in the problem series (Inh) are only partially corrected in the solutions returned by the 
tested methods. The lower remaining average trend bias is achieved by MASH, PHA, ACMANT, 
Climatol and RHtests in the case of double sinusoidal seasonality, with small differences between 
them, while in the case of a squared seasonality all returned solutions have biased trends, although 
those of PHA and ACMANT present smaller deviations than the other methods.

Another experiment was carried out to explore the influence of network size on the performance of 
the methods. Only samples of 10 series had been used so far (apart from the tests with 30 additional 
short series), but now their results are compared with those obtained with networks of 20, 40 and 80
series, always with the use of the Tm2 master network and the most realistic settings (i.e., random 
number, position and seasonality amplitude of the biases). RMSE averages for every network size 
and their overall means are displayed in Table 6, and the results suggest that network size has little 
effect on the rank order of method performances. An interesting feature is that the advantage of 



ACMANT, Climatol and HOMER methods increases with growing network size. In the performed 
tests, RMSE of the three mentioned packages decreased by 30-35% when network size increased 
from 10 to 80 time series. By contrast, the RMSE reduction for growing network size was only 10–
20% with the other homogenization methods and absent in some RHtests versions. 

Table 4: Rank of the RMSE averages (°C) in the three temperature benchmarks Tm1, Tm2, Tm3, 
and in their means, for the experiment with random number, size and seasonality of biases. Errors 
of the inhomogeneous (Inh) problem series are enhanced in bold characters. Results using 30 
additional short series are shown in bold italics (labels Ai4, As4, cl4, Cl4 and US4).

Rank Tm1 Tm2 Tm3 Mean

1 ACi 0.24 ACs 0.28 Cl4 0.48 ACs 0.34

2 ACs 0.24 ACi 0.29 As4 0.49 Cl4 0.35

3 Cl4 0.26 Cl4 0.30 ACs 0.50 ACi 0.35

4 As4 0.28 As4 0.31 Ai4 0.52 As4 0.36

5 Cl1 0.28 Cl1 0.34 ACi 0.53 Cl1 0.39

6 Ai4 0.30 Ai4 0.34 cl4 0.53 Ai4 0.39

7 Hob 0.36 Hob 0.41 Cl1 0.54 Hob 0.46

8 Hoa 0.37 Hoa 0.41 RHr 0.54 Hoa 0.46

9 US4 0.40 cl4 0.44 MSH 0.54 cl4 0.47

10 US1 0.40 US1 0.45 cl1 0.56 cl1 0.48

11 cl4 0.42 cl1 0.46 US4 0.58 MSH 0.48

12 cl1 0.43 MSH 0.47 Hob 0.60 US1 0.48

13 MSH 0.44 RHr 0.47 Hoa 0.60 RHr 0.49

14 RHr 0.45 US4 0.53 US1 0.60 US4 0.50

15 RHR 0.69 Inh 0.82 Inh 0.82 Inh 0.82

16 Inh 0.82 RHR 0.83 RHa 1.09 RHA 1.06

17 RHA 0.99 RHA 1.10 RHA 1.10 RHa 1.07

18 RHa 1.00 RHa 1.11 RHR 2.23 RHR 1.25



Table 5: Ranks and RMSE averages of the tested packages on Tm2 samples with seasonal cycles 
single sinusoidal, double sinusoidal and squared in the introduced biases. Errors of the 
inhomogeneous (Inh) problem series are enhanced in bold characters.

Rank Single Double Squared

1 ACs 0.28 ACs 0.17 ACi 0.31

2 ACi 0.29 ACi 0.19 ACs 0.35

3 Cl1 0.34 Cl1 0.21 Cl1 0.40

4 Hoa 0.41 cl1 0.24 Hoa 0.44

5 US1 0.45 US1 0.24 US1 0.45

6 cl1 0.46 MSH 0.27 MSH 0.49

7 MSH 0.47 RHr 0.29 cl1 0.49

8 RHr 0.47 Hoa 0.34 RHr 0.58

9 Inh 0.82 RHR 0.67 Inh 0.92

10 RHR 0.83 Inh 0.70 RHR 0.92

11 RHA 1.10 RHa 1.03 RHA 1.15

12 RHa 1.11 RHA 1.06 RHa 1.16

Trend errors (not shown) generally decrease slightly with growing network size, but HOMER is an 
exception: The high biases produced in the homogenization of 10-series networks vanished when 
larger networks were tested.

In the last experiment of this round, the Tm2 master network was used to check the performance of 
the homogenization packages when shifts in the mean of the series have the same sign and are 
concentrated in a short period of time (up to a decade). This situation may occur when observation 
practices change in a whole network to adapt to changes in technology (as, e.g., introducing the 
Stevenson shelter or changing manned stations to automatic observing systems). Figure 7 shows the
RMSE box-plots when such simultaneous biases take place in 40, 70 or 100 % of the networks (4, 7
or all of the 10 series samples).

When near simultaneous changes affect only a 40 % of the network series, most methods still 
perform well, but when 70 or 100 % of the series are affected, the superiority of the pairwise time 
series comparison methods (PHA and HOMER) becomes evident, although ACMANT also show 
some resistance to produce biased results. The same considerations can be applied to the trend 
errors (right column in Figure 7). When all series of a network are simultaneously affected by the 
same bias, relative homogenization methods will not detect this change because it will be taken as 
real climate variation. In these extreme case absolute homogenization ability to detect biases will 
give better results.



Table 6: Ranks and RMSE averages of the tested packages on Tm2 samples of 10, 20, 40 and 80 
series, plus the overall mean values. Errors of the inhomogeneous (Inh) problem series are enhanced
in bold characters.

Rank 10 series 20 series 40 series 80 series Mean

1 ACs 0.28 ACs 0.23 ACs 0.22 ACi 0.19 ACs 0.23

2 ACi 0.29 ACi 0.24 ACi 0.23 ACs 0.20 ACi 0.24

3 Cl1 0.34 Cl1 0.27 Cl1 0.25 Cl1 0.22 Cl1 0.27

4 Hob 0.41 Hoa 0.29 Hob 0.28 Hob 0.27 Hob 0.31

5 Hoa 0.41 Hob 0.29 Hoa 0.28 Hoa 0.27 Hoa 0.31

6 US1 0.45 US1 0.39 MSH 0.39 MSH 0.38 cl1 0.41

7 cl1 0.46 MSH 0.40 cl1 0.39 cl1 0.38 MSH 0.41

8 MSH 0.47 cl1 0.40 US1 0.40 RHr 0.39 US1 0.41

9 RHr 0.47 RHr 0.42 RHr 0.40 US1 0.40 RHr 0.42

10 Inh 0.82 Inh 0.79 Inh 0.78 Inh 0.78 Inh 0.79

11 RHR 0.83 RHR 0.97 RHA 1.08 RHa 1.06 RHA 1.07

12 RHA 1.10 RHA 1.04 RHa 1.08 RHA 1.06 RHa 1.07

13 RHa 1.11 RHa 1.04 RHR 1.19 RHR 1.41 RHR 1.10

3.2.3. Third round of experiments: 100 years series

Homogenization packages were tested on networks of 20 and 40 series of 100 years length, with 
missing data mimicking the characteristics of the HOME benchmark. Figure 8 shows the RMSE 
(left panels: a, c) and trend errors (right panels: b, d) obtained from 100 runs. As MASH and 
HOMER gave errors due to the presence of missing data, their box-plots appear in white with the 
same dimensions as those of the problem series (Inh). Results from the 20 series samples (Figures 
8a and 8b) show that ACMANT and PHA correct the problem series better, followed by Climatol. 
RHtests apply substantial corrections in absolute mode, but that is not the case when using reference
series, probably due to some errors linked to the presence of missing data.

The bottom row of Figure 8 displays the results for the 40-series networks whose inhomogeneities 
are of a lower magnitude and complicated by concentrated positive shifts around 1975 in 36 of the 
series (90 %). In this case, the best results are achieved by ACMANT, Climatol and PHA.

Trend errors (Figure 8d) are reduced in all successfully tested methods, except for the absolute 
homogenization mode of RHtests. However, the network-wide trend induced by the concentrated 
positive shifts is considered to be a part of the climate signal, resulting in systematically biased 
trend estimations by all of the tested methods.



Figure 7. RMSE (left column: a, c, e; in °C) and trend errors (right column: b, d, f; in °C per 100 
years) in case of concentrated biases in 40 (top row: a, b), 70 (middle row: c, d) and 100 % (bottom 
row: e, f) of the series.



Figure 8. RMSE (left column: a, c; in °C) and trend errors (right column: b, d; in °C per 100 years) 
of the test results of the 100 year series with missing data. In the top row (a, b), networks contained 
20 series, while in the bottom row (c, d) networks included 40 series and concentrated biases were 
applied to 90 % of them (36 series). (MASH and HOMER crashed because of the missing data, 
hence their boxplots replicate, in white color, those of the problem series, Inh.)

4. Discussion

In this work we updated some of the method intercomparison results of the HOME initiative, with 
two important differences:

(i) The characteristics of the homogeneous datasets in HOME were derived from Central European 
observing networks (Venema et al., 2012). As a result, cross-correlations were much better than 
those found in other geographical areas with different climates, more complex orography and less 
dense station distribution. Here, precipitation series mimic three different climates and the 
temperature datasets have different degrees of cross-correlations, including more adverse situations.

(ii) In order to repeat the tests many times, sometimes with different settings, only methods that 
could be run in a completely automatic way were tested. However, the tested methodologies include
the best known and more used methods currently implemented as publicly available computer 
packages, including the software HOMER produced (but not tested) by HOME. The main missing 



software was AnClim (Štĕpánek, 2008), a too Windows oriented package as to be automated in a 
Linux environment. But more than a method it is a software suite that implements some of the 
methodologies evaluated here.

One of the praised characteristics of the HOME benchmark tests was its blind mode (Venema et al.,
2012), since none of the participants homogenizing the problem datasets knew the homogeneous 
versions of the series. In our tests, the generation of the homogeneous master networks was the first 
step, and although the master networks were not hidden to the tester, automatic algorithms 
randomly sampled the homogeneous series and inserted inhomogeneities into them without using 
any "a priory" knowledge. Therefore, our experiments can also be included in the blind category.

One thing worth noting is that, apart from a few variations in some methods, they have been run 
using their default parameters. Some packages (e.g., Climatol) admit a high degree of tuning to 
adapt to different variables and time scales, while others run with no or few options of change. 
Moreover, to automate the application of some packages, especially Rhtests and HOMER, whose 
primary operation is manual, scripts had to be developed that may not be optimal. Therefore, in all 
cases an experienced user might obtain better results on applications of these software packages to 
specific problems than these automatic runs. However, these experiments illustrate several aspects 
of homogenization practices, as discussed in the following paragraphs.

RHtests results confirm the recommendation of avoiding absolute homogenization unless there are 
no reliable reference series available (Venema et al., 2012). This is often the case of remote islands 
and extremely data-sparse regions, but even in those cases it may be worth exploring the possibility 
of using reanalysis series as references.

In its relative homogenization mode, this package yields good results, although the quantile 
adjustment produced huge errors in the precipitation tests. For temperature, it improved the results 
very much when there was a marked seasonality in the inhomogeneities, otherwise the impact of the
quantile adjustment was negligible. Note that a more correct evaluation of the performance of 
quantile adjustments would need tests focusing more on the homogenization accuracy of extreme 
values.

Most methods detect break-points with a significant threshold of α=0.05. Although there are 
publications on critical values of SNHT for various significant levels (Alexandersson, 1986; Khaliq 
and Ouarda, 2007), Climatol application experiences showed that the values of this test are highly 
dependent of the climatic variable and geographic characteristics of the area under study, and 
therefore Climatol applies a conservative default value of SNHT=25 for monthly data, which the 
user can modify based on the anomaly graphs and histogram of residual SNHT of the homogenized 
series provided in its graphic output.

Very different tolerance to missing data has been observed during these experiments. HOMER and 
MASH refused to work even with a moderate proportion of gaps (Figure 8), and only ACMANT, 
Climatol and PHA could make use of additional short series (section 3.2.3 and Table 4). From these
three methods, only Climatol will always provide estimations for all missing data. Although 
ACMANT and PHA avoid the estimation of missing data when reference series does not have a 
minimum correlation with the problem series (0.4 in the case of ACMANT) or the number of 
neighbor series is too low, Climatol does not impose such limits. As a result, the estimated data can 
be affected by substantial errors when correlations are poor (a condition met when the closest 
reference series are very far away), but the population of the filled in data are expected to have a 
probability distribution similar to that of the observed values.

The PHA algorithm and a similar pairwise procedure included in HOMER showed their increased 
ability to detect biases in the tested series when the same kind non-climatic shifts affects many time 
series of the network within a short period of time (Figure 7). This condition may arise when 
changes in observing practices are applied to the whole network (e.g., changes in the thermometric 



shelter or from manual to automatic instruments). In these cases, they outperform any of the other 
methods, since concurrent variations are confounded with the true climate signal when a single 
combined series is used as reference. However, this does not preclude the use of the other methods 
in these cases provided that series unaffected by the same biases (e.g., from a neighbor country or 
from a reanalysis) are included as references. (Reanalysis has already been successfully used to 
homogenize climate series in works as those of Gonzalez et al., 2018 and Azorin-Molina et al., 
2019.) Moreover, the use of composite reference series generally provides higher signal-to-noise 
ratio than pairwise comparisons, and this may be one reason why ACMANT and Climatol often 
outperformed PHA and HOMER. Also note that the joint detection routine of the HOMER method 
functions in absolute homogenization mode, which is a known problem (Mestre et al., 2013; Gubler
et al., 2017) affecting the performance of HOMER.

Other metrics commonly used in homogenization studies have been the Centered Root Mean 
Squared Error (CRMSE; Gubler et al., 2017; Joelsson et al., 2022; Killick et al., 2021) and the 
Pearson correlation coefficient (Coscarelli et al., 2021) between the homogenized and the problem 
series. Both have been disregarded here because they can be misleading, since when a series is 
added to or multiplied by a big number it would still show a good result in terms of CRMSE or 
correlation coefficient, respectively.

Another consideration we would like to note is that the results and rankings here exposed may not 
be the only criteria to choose a homogenization program, since the user may also be influenced by 
other characteristics, such as their operation ways (underlying programming environment, 
automation, format of the input files, etc), openness of the code, tolerance to missing data, 
availability of guidance manuals and variety of output products. Moreover, the final decision must 
take into account the special characteristics of the network under study, climate variable, time 
resolution and other climatic and geographical features.

Finally, we wish to refer to the increasing interest on the homogenization of daily series 
(Szentimrey, 2013), which is needed for assessments on the variability and trends of extreme 
values. Therefore, benchmarking of homogenization methods applied to daily series is currently an 
active field of study (Killick, 2016 and 2021; Skrynyk et al., 2020; Guijarro, 2019b). While some of
the experiences in the homogenization of monthly series can be applied also to the daily resolution, 
the metrics to evaluate the performance of the methods may not be all appropriate for the daily 
series. This is the case of the RMSE, which when correlations are low reaches higher scores when 
corrections converge to the mean value of the series, with the undesired effect of lowering its 
variability, hence hindering the usefulness of the series to reliably estimate the probability of 
extreme values.

5. Conclusions

The automatic application of the main publicly available homogenization software packages has 
allowed the comparison of their performances when applied to monthly precipitation and 
temperature synthetic series with different climate and inhomogeneity characteristics. The main 
conclusions of this study can be summarized as follows:

i ACMANT, followed by Climatol, gave the best results in almost all tested conditions 
and datasets. However, when concurrent substantial biases are concentrated in a short 
period of time, the pairwise algorithms of PHA and HOMER outperformed them.

ii Therefore, relative homogenization methods relying on synthetic reference series must 
take care of using series alien to the studied network when similar changes concentrated 
in time are suspected in most of the series. These additional series can be observational 
series of a neighboring region or series derived from a reanalysis.



iii HOMER and MASH appear as the less tolerant methods to a substantial presence of 
missing data in the series. Other packages admit a higher proportion of gaps, but not to 
the extent of Climatol, ACMANT and PHA, which can make use of the short series 
usually available in real observational meteorological networks.

iv Denser networks of time series generally facilitate more accurate homogenization 
results, as happened with ACMANT, Climatol and HOMER. The inclusion of short 
neighbor series in the homogenization of longer series resulted in notable improvement 
only in the accuracy of the Climatol results.

v Relative homogenization generally does not introduce biases into the series and by 
correcting inhomogeneities the spatial coherence of climate trends can be substantially 
improved.

vi The variety of results obtained in this project may serve as a guidance for choosing a 
homogenization method, but users should consider the special characteristics of a given 
homogenization task like network properties, climate variable, time resolution, metadata 
information and further climatic and geographical features.
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