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Abstract

In this paper we present the results of quality control and homogenization procedures

applied to long time series of daily atmospheric precipitation sums (Rr) and daily mean

(Tm),  maximum (Tx) and minimum (Tn) air  temperature collected in Ukraine.  The

daily data from 178 meteorological  stations covering the period of  1946-2020 were

analyzed.  In  order  to  perform  a  thorough  quality  assurance  check,  we  used  the  R

package INQC, while the Climatol homogenization software was used to detect and

remove  breaks  from the  time  series.  The  INQC quality  assurance  tests  revealed  a

relatively small  number of  erroneous records (around 0.01% for  each variable)  and

suspicious values (up to 0.09%). The application of Climatol resulted in 195, 296, 355

and 359 break points, detected for Rr, Tm, Tx, and Tn, respectively. These quantities

coincide roughly with the results of the HOMER homogenization procedure applied to

monthly time series for the same stations and almost the same period (performed in the

previous  works  of  the  authors).  To  verify  the  homogenization  results,  statistical

comparison of the raw and homogenized time series was performed. The verification

demonstrated  that  the  quality  control  and  homogenization  procedures  detected  and

removed errors and breaks very well, and air temperature and precipitation fields after

the homogenization are more self-consistent compared to the original raw data.
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1. INTRODUCTION

A considerable part of modern climate studies rely on direct application of empirical

data collected through meteorological measurements and/or observations (Hartmann et

al., 2013). Therefore, the creation of high-quality digital datasets of station time series

(the  longer,  the  better)  with  different  time  resolutions  is  extremely  important  for

deepening  and  improving  our  knowledge  about  climate,  its  change  and  variability.

However, the time series of climate data are often affected by some quality control (QC)

issues  (missing  values,  outliers,  errors,  etc.)  and  artifacts  (sharp  breaks  or  gradual

trends)  (Aguilar  et  al.,  2003;  WMO,  2018).  The  latter,  usually  referred  to  as

climatological inhomogeneity or station signal, can arise as a result of various factors

unrelated to climate change. The nature of their appearance is artificial and consists in

changing measurement methods, changing the observer or equipment; changes in the

environmental  conditions  around  the  stations  or  with  the  relocation  of  the  station

(Trewin, 2010). It is clear that such undesirable effects (QC issues and station signals)

must be eliminated as much as possible before further use of the data (Aguilar et al.,

2003). Consequently, the QC and homogenization of raw data are important steps in

climatological  research,  because  the  direct  analysis  of  meteorological  information

without the above mentioned preliminary processing can lead to incorrect results and

wrong conclusions (e.g., Toreti et al., 2011).

There are numerous papers where results of QC and homogenization procedures

applied on the global, national, regional or local level to station time series of various

climate variables with the monthly (e.g., Li et al., 2012; Mamara et al., 2013; Mamara et

al., 2014; Vertačnik et al., 2015; Prohom et al., 2015; Laapas and Venäläinen, 2017;

Mamara et al.,2017; Kolendowicz et al., 2018; Menne et al., 2018; Aruffo and Di Carlo,

2019; Coll et al., 2020; Kessabi et al., 2022), daily (e.g., Kuglitsch et al., 2009; Trewin,

2012; Xu et al., 2013; Spinoni et al., 2014; Hewaarachchi et al., 2017; Squintu et al.,

2018; Yosef et al., 2018; Fioravanti et al., 2019; Randriamarolaza et al., 2021; Dijkstra

et al., 2021; Mateus and Potito, 2021) and even hourly (Dumitrescu et al., 2020) time



resolutions are presented. For modern climatological research, time series with daily

time resolution  are  specially  precious.  For  instance,  they  are  used  to  study climate

extremes, since extreme weather phenomena are characterized by a short duration (from

several hours to several days) (e.g., Moberg et al., 2006; Mistry, 2019; Yosef et al.,

2019; Randriamarolaza et al., 2021).

Number of studies on the national level were performed in Ukraine to carry out

QC and detection and adjustment  of  inhomogeneities  in time series of  the essential

climate  variables  (ECV) such as  precipitation  and air  temperature  (Osadchyi  et  al.,

2017; Skrynyk et al., 2018; Skrynyk et al., 2019; Osadchyi et al., 2022). However, only

monthly data were analyzed by means of the HOMER software.

The main objective of this paper is to present results of quality assurance and

homogenization  procedures  applied  to  long station  time series  of  daily  atmospheric

precipitation and air temperature (mean, maximum and minimum) collected in Ukraine.

For all four considered climate variables, data for 178 stations over the period of 1946-

2020  were  analyzed.  The  list  of  stations  was  the  same  as  in  the  previous  studies

performed at the monthly scale, while the period under study was slightly extended to

include the recent years. In order to achieve the objective, we used the state-of-the-art

and well established software, INQC for detection of erroneous values and Climatol for

break detections  and shift  adjustments.  Our  research can be  considered as  the  next

logical and consistent step in the study of climatological inhomogeneities in the national

climate time series. The obtained results make it possible to carry out a comprehensive

multi-scale  comparative  analysis  of  inhomogeneities  detected  in  the  time  series  at

different time scales and by means of different software. Also, homogenized databases

of long daily series of meteorological  observations can be used as a solid basis for

specialized geostatistical interpolation/downscaling and creation of gridded databases,

and research on changes in climate extremes.

2. DATA AND METHODS

2.1. Ukrainian daily atmospheric precipitation and air temperature (mean, max

and min) time series (1946-2020)

The daily data of the considered essential climate variables (Rr, Tm, Tx, and Tn) were

obtained from the Central Geophysical Observatory (CGO), which is an observation



institution of the Ukrainian Weather Service. It should be recalled that in Ukraine daily

mean air temperature, Tm, is defined as an average of all sub-daily values measured on

this day. The majority of the data were provided in digital form as Excel spreadsheets

and an ACCESS data file. The list of 178 meteorological stations for all variables (Rr,

Tm, Tx, and Tn) was exactly the same as in the previous works on quality check and

homogenization of  monthly data  of  Ukraine (Osadchyi  et  al.,  2017;  Skrynyk et  al.,

2018). It is also provided as supplementary material (SM1) to this paper. The station

locations on the territory of Ukraine are shown in Figure 1. Similarly to (Osadchyi et

al., 2017; Skrynyk et al., 2018), the year of 1946 was selected as the earliest year of the

data due to an extremely large percentage of missing values in the time series during

World War II (1939-1945). It is well known that a large number of synchronous missing

data/periods is a serious obstacle for any relative homogenization procedure. After a

preliminary processing and analysis of the provided digital datasets, the corresponding

time series were transformed to the formats suitable for the QC and homogenization

software. The preliminary analysis also revealed a fairly large number of missing values

in  the  time  series  of  all  four  variables,  with  the  largest  quantity  in  atmospheric

precipitation observations.  The two most  problematic periods are 1946-1960 for  the

many  time  series  collected  over  the  whole  country,  and  2015-2020  for  26  stations

located in the Crimea and Eastern parts of Lugansk and Donetsk regions. Unfortunately,

data for the last six years from those stations are not directly available to Ukrainian

scientists.

For the first period, 1946-1960, in order to complete the missing values, data

rescue (digitization from paper sources) was performed by the authors during the recent

couple of years. The paper sources of the daily data records (special meteorological

tables and reports) were also provided by CGO. As a result of the digitization activity,

1,651,930 daily values of the climate variables were rescued and introduced for further

analysis. We planned to continue the digitization until all available in the paper form

information  would  be  rescued.  However,  due  to  some  circumstances  (the  Russian

aggression and subsequent sharp reduction of financing, temporal evacuation from Kyiv

of several research group members, etc.) we had to stop this work and a certain amount

of values is still missing.



For  the  second  period,  2015-2020,  we  tried  to  find  data  on  the  Internet.

Fortunately, 3-hourly data (with measurements performed at 00:00, 03:00, 06:00, 09:00,

12:00, 15:00, 18:00, and 21:00 UTC) for 20 stations (mainly, from the Crimea) covering

2015-2020 were found and downloaded from (Meteorological data, 2005) and then used

to calculate corresponding daily values. Data from the other inaccessible climatological

stations were assumed to be missing. Calculation of daily mean air temperature and

daily sum of atmospheric precipitation from the sub-daily data is rather straightforward

and was performed according to definitions of  these parameters.  Daily min/max air

temperature was calculated as a minimal/maximal value of eight measurements for a

particular day. Such approach can introduce some errors to Tn and Tx data, but in our

case, the raw errored data are still better than missing values.

The general visualization of the data completeness in the time series is presented

in  Figure  2  in  the  form  of  a  heat  map.  Here,  the  completeness  is  defined  as  the

percentage of available values for each station and year. As can be seen from the figure,

most of the missing values are still concentrated in the period of 1946-1960 (15 years).

The time period 1961-2020 has, on average, a satisfactory and high amount of series

completeness (more than 80-90%). It should be noted that stations with time series of

almost  100% completeness  are  uniformly  distributed  over  the  territory  of  Ukraine,

allowing  to  perform  a  relative  homogenization  by  means  of  the  Climatol  software

without problems. Nevertheless, the results of this study for the periods of 1946-1960

and 2015-2020 (for the Crimea stations) should be used with some caution.

2.2. Quality assurance procedure and the INQC package

Time series of meteorological observations and measurements almost always contain

errors of various types and origins, which can significantly affect results of the data

analysis. That is why it is necessary to apply a quality control procedure to identify and

remove errors, outliers, etc.

The quality control procedure in our study was performed in two stages. The

first  one  is  a  preliminary  “manual”  control  using  the  built-in  tools  of  the  Excel

spreadsheet and visual inspection of the digitized series. Such “manual” QC check aims

to clear  the  series  of  various  types  of  typographical  errors  that  may have occurred

during  the  digitization  of  the  data.  Another  reason  for  performing  this  preliminary



quality control check is that the data must be cleaned of non-numeric values in order to

let  the  software  be  used  in  the  subsequent  steps  of  the  QC procedure  to  function

properly. 

The next, main phase of quality control is the analysis of time series using the

INQC  software  (Indecis  Quality  Control  of  Climatological  Daily  Time  Series,

https://CRAN.R-project.org/package=INQC). INQC is a software product that runs in

the  R  environment  and  is  specifically  designed  to  perform  quality  control  of

climatological time series with the daily time resolution. Originally, the software was

developed in order to QC the European Climate Assessment & Dataset station data in

the frame of the INDECIS project (http://www.indecis.eu/). However, INQC’s functions

can be used to deal with quality problems in any other climatological data set with the

daily time resolution. The package includes more than 20 fully parameterizable quality

assurance functions/tests for detecting false/erroneous or suspicious values in a time

series  of  basic  climate  variables  such  as  mean,  maximum  and  minimum  air

temperatures, atmospheric precipitation and pressure, relative humidity, wind speed, etc.

INQC works by applying a series of tests to the data, detecting spurious values (e.g.

negative precipitation or temperatures above/below certain set limits), suspicious values

(e.g.  extreme  values  that  fall  out  of  the  frequency  distribution  of  analyzed

meteorological variables) and cumulatively suspicious values (which are repeated too

many  times  in  separate  short  periods).  The  list  and  brief  description  of  the  INQC

functions, which were used to quality control the time series, is presented in Table 1.

The set  of  functions and,  accordingly,  the tests  applied for  different  meteorological

variables can be different. At this stage, quality control was carried out for the entire

time period of the study, namely for the years 1946-2020 for 178 stations.

During the  quality  control  performed by means of  the  INQC software,  each

value in the time series is assigned an additional value based on the system of integer

quality  control  flags  (Table  2),  which  provide  information  about  the  status  of  the

checked data for further analysis and decision-making regarding possible correction or

removal of false/erroneous/suspicious value. The flags might be produced by means of

different INQC tests/functions. For instance, erroneous values (flag 1) might be detected

by functions ‘weirddate’ or ‘physics’; almost certain error (flag 2) by ‘jumpQUANT’ or



‘newfriki’; outlier suspect (flag 3) by ‘IQRoutliers’; collectively suspect (flag 4) might

come from ‘flat’ or ‘toomany’ (see Table 1 for function descriptions).

2.3. Homogenization software Climatol

In order to detect and remove station signals in the time series of daily mean, maximum

and minimum air temperatures and daily sums of atmospheric precipitation of Ukraine,

the software Climatol (Climate Tools: Series Homogenization and Derived Products,

https://CRAN.R-project.org/package=climatol) (Guijarro, 2018) was selected. Climatol

has been successfully used at the national and international levels (e.g., Azorin-Molina

et al.,  2019; Coll et al.,  2020; Dumitrescu et al.,  2020; Kessabi et al.,  2022) for the

homogenization of time series of different meteorological variables with the sub-daily,

daily or monthly time resolution.

There are several reasons why the Climatol software was used to homogenize

the daily time series of the essential climate variables of Ukraine: (1) it is capable to

perform homogenization of data with a daily time resolution (e.g., Azorin-Molina et al.,

2019); (2) the software has been well evaluated and verified along with other similar

programs/algorithms and it has shown good results (Venema et al., 2012; Guijarro et al.,

2019); (3) it can be applied automatically what significantly facilitates homogenization

of  large  datasets;  (4)  uncertainties  of  the  Climatol  adjustment  algorithm have  been

evaluated and quantified what can provide an assessment of the added value of the

Climatol homogenization (Skrynyk et al., 2020); (5) it has lower (compared to other

similar software) requirements for the completeness of the time series and allows to

perform their homogenization even in case of a relatively large number of missing data.

The first step of the Climatol algorithm is the data normalization and filling in

missing values through an iterative procedure in which the main statistical properties of

time series, namely means and standard deviations, are recalculated at every iteration

until  their  stationary/stable  values  are  obtained.  When  this  condition  is  met,  the

calculation of anomaly series is carried out by subtracting the corresponding composite

reference  series  (weighted  average  of  a  prescribed  number  of  the  nearest  available

normalized data). This allows to evaluate the quality of the series by removing outliers

exceeding the user-defined threshold value (Climatol control parameter dz.max), as well

as to detect inhomogeneities in the series using the Standard Normal Homogenization



Test  (SNHT)  (Alexandersson,  1986;  Alexandersson  and  Moberg,  1997;  Khaliq  and

Ouarda,  2007;  Toreti  et  al.,  2011).  Typical  threshold  value  of  dz.max  for  outlier

removal is 5 standard deviations. In case the distribution is skewed, outliers can be

removed more  flexibly  using an additional  (dz.min)  parameter,  which by default  is

equal  to  dz.max.  The  default  SNHT  threshold  values  for  both  detection  levels

(windowed,  snht1,  and  performed  for  the  whole  series,  snht2)  are  the  same

snht1=snht2=25.  However,  these  values  are  not  universal,  and  might  be  changed

depending on the properties of the studied series. The smaller the value of the SNHT

test, the more homogeneous it is considered to be. The SNHT test is designed to detect

single breakpoints. Therefore, to avoid possible errors in detecting inhomogeneities, this

procedure is repeated iteratively. Every time SNHT exceeds the threshold value, the

series is divided into two segments at the point with the largest value. After that, the

SNHT analysis is applied again to each segment to avoid possible errors in the detection

of  break  points.  In  addition  to  the  detection  of  break  points,  another  part  of  the

homogenization procedure is the adjustment/correction of shifts, whose amplitudes are

calculated using an orthogonal (type II) linear regression model. More comprehensive

description of the theoretical aspects and mathematical basis of the Climatol method can

be found in the user manual (Guijarro, 2018).

In our study, the homogenization of the daily time series was carried out using

the following practical steps: (1) preparation and reading of input files; (2) obtaining

monthly data from daily values; (3) running Climatol in an exploratory mode at the

monthly level to determine the parameters for outliers and inhomogeneities detection

(dz.max, snht1 and snht2); (4) homogenization (detection of breakpoints and outliers) at

the  monthly  level;  (5)  estimation  and  automatic  infilling  of  all  missing  data  and

correction  of  inhomogeneities  at  the  daily  scale  based  on  the  information  about

breakpoints from the previous stage; (6) export/extraction of the homogenized daily

time series for further analysis.

The  Climatol  homogenization  procedure  (detection  and  correction)  can  be

performed directly at the daily time resolution. However, the application of Climatol on

the monthly time scale is a more effective way due to a much higher signal-to-noise

ratio. As a result of the described procedure, sets of output files are usually obtained.

Among them, there are the output text and r-data files, which contain quality controlled



and  homogenized  series  of  the  meteorological  variables,  series  of  detected

inhomogeneities,  detected errors,  as  well  as  a  file  with  flags  indicating information

whether  value  is  original,  infilled  (originally  missing),  or  adjusted  to  eliminate

inhomogeneities  or  outliers.  Others  are  PDF  files  –  graphical  output  with  various

diagnostic graphics. In addition, the set of output files can be easily controlled by the

user with the help of a wide range of built-in Climatol functions.

In  addition  to  the  packages  described  above,  we  also  used  the  RClimDex

software (Zhang et al.,  2018) to calculate yearly time series of two climate extreme

indices, TN90p (warm nights) and TX90p (warm days), and the least squares method to

calculate  linear  trends  (slopes  of  the  regression  lines)  in  time  series  of  either  the

essential climate variables or the climate extreme indices in the verification procedure

of the obtained QC and homogenization results. The ordinary kriging method was used

to build maps demonstrating the trend spatial distributions.

3. RESULTS

3.1. Quality control results

The first stage of the QC procedure was carried out for the periods in which the process

of manual digitization of the data from paper sources was performed (mainly 1946-1960

or 1946-1975). This QC check revealed 56 rough errors. Their largest numbers were

found in the series of maximum (26) and mean air temperature (18), slightly smaller

numbers in the series of daily  precipitation sums (5) and minimum temperature (7). The

found errors were corrected based on the original paper sources (tables/reports).

The results of INQC application to the daily time series of Ukraine are presented

in Table 3. As can be seen from the table, the number of the data values that passed

quality control successfully is greater than 88% for each variable. The percentage was

calculated based on the total quantity of the time series members, including missing

values. The numbers of detected true errors (marked by INQC with the integer flag “1”)

range from 15 to 502 depending on the variable,  however,  in percentage rate  these

values  do  not  exceed  0.01%.  Larger  numbers  of  values  fell  into  the  categories  of

probable  errors,  suspicious  outliers,  and  collectively  suspects.  In  this  case,  the

corresponding percentages reach 0.09%, however, in absolute terms, these numbers are

quite significant. For instance, 4,275 collectively suspects were revealed by INQC in the



Rr time series. The percentage of missing data is approximately 10-11.5% for each ECV

considered.

Given the circumstances mentioned above and due to quite large numbers of

detected suspicious values, it was impossible to check their correctness by comparing

with  original  records  in  published  meteorological  tables  and  reports.  However,  we

checked all detected true errors, which, probably, have the most harmful influence on

the daily time series and, for instance, further calculation of climate extreme indices.

The summary of  our  check is  presented in  Table  4.  In  addition,  the QC procedure

revealed a large number (7,305) of errors/suspects in precipitation time series for one of

the  stations  (these  cases  are  not  included  in  Table  4).  After  comparison  with

corresponding daily values reporter in paper sources,  it  was discovered that  for this

station decimal separator was omitted during the period of 1946-1965. It is worth also

noting that the Climatol software is also capable of detecting and removing outliers.

Therefore, all suspicious values detected by INQC are subject to one more check on the

next stage of the data processing.

3.2. Climatol parameters testing

In order to tune the Climatol software to remove inhomogeneities from the time series

as much as possible, it is necessary to choose the proper threshold values for outliers

detection/removing (dz.max)  and the  Standard Normal  Homogenization Test  (snht1,

snht2).  As  it  was  mentioned  above,  the  default  values  of  these  parameters  are  not

universal  and  must  be  changed  depending  on  the  properties  of  the  studied  series.

According to the recommendations (Guijaro, 2018), the best practice to select proper

values of the tunable parameters is to use the results of Climatol runs in an exploratory

mode.  For  example,  analyzing  the  results  of  the  Climatol  software  applied  in  the

exploratory  mode  to  the  monthly  mean  air  temperature  (namely,  the  histogram  of

normalized  anomalies  shown  in  Fig.  3a),  it  becomes  clear  that  the  default  value

dz.max=5 is not the best fit. Using this value will remove a significant amount of data

from the time series that are not outliers. In this case, the value dz.max=10 appears to be

more correct, since the following groups of values are separated by visible minima. As

for the snht1 and snht2 parameters, they can be determined based on the histograms of

the maximum windowed SNHT (Fig. 3b) and the maximum global SNHT (Fig. 3c),



respectively. According to the recommendations of the Climatol user manual, a visual

analysis of these figures suggests that snht1 and snht2 should be set to 55 and 220,

respectively. However, only 15 breaks were detected with such parameters. For the data

set consisting of 178 time series defined over the period of 75 years (1946-2020), this

amount of break points seems to be too small and probably incomplete. Especially if the

fact is taken into account that the number of influencing events (station relocations,

replacing  measuring  devices  and/or  methodology  etc.)  which  were  reported  in  the

station metadata is much higher (namely, 221). Performing homogenization with such

values of snht1 and snht2 parameters, the results will not be of sufficient quality, and

the obtained series will still contain a significant amount of inhomogeneities.

In order to define the optimal values for the tunable Climatol parameters, we

performed sensitivity  tests  on  the  monthly  scale  and compared the  results  with  the

previously published papers (Osadchyi et al., 2017; Skrynyk et al., 2018; Osadchyi et

al.,  2022)  and the  metadata  collected from historical  descriptions  of  the  considered

stations. For each climate variable under study, three Climatol runs were performed

with different values of the snht1 and snht2 parameters, which were gradually reduced

by 50% from test to test. Their initial values were obtained from the Climatol runs in the

exploratory mode. At the same time, the dz.max parameter remained the same for all

numerical experiments and its value was also defined from the exploratory Climatol

run. The last, fourth test, was performed with the snht1 and snht2 values, which provide

results (e.g., numbers of break points) which are comparable and consistent with the

corresponding ones obtained previously on the monthly scale. The brief summary of the

performed tests is  presented in Table 5.  The outputs of the last  Climatol runs were

accepted as the main results of the QC and homogenization procedures applied to the

daily time series of ECV (Rr, Tm, Tx, and Tn) of Ukraine.

3.3. Homogenization results

Below  we  provide  some  details  and  statistical  information  characterizing  the

homogenization  results.  Statistical  comparison  of  the  raw  and  corresponding

homogenized time series,  which can be considered as  verification of  the performed

homogenization, is also presented. 



3.3.1. Air temperature data

The percentage of original values in the quality controlled and homogenized time series

of daily mean temperature is 53.4%, while the remaining 46.6% are values obtained or

changed as a result of the homogenization and quality control procedures. Among them,

11.1% are infilled originally missing data and 36.6% are corrected values.  The last

group includes both the values changed due to detecting breaks and consequent shift

adjusting and the re-infilled values that  were previously removed as outliers.  In the

homogenized time series of Tn and Tx, the numbers of original values are somewhat

smaller,  45.4%  and  45.6%,  respectively.  The  number  of  infilled  missing  values  is

approximately at the same level as for Tm series, 10.5% and 10.4%, while the numbers

of corrected values increased to 44.2% and 44.0%, respectively.

The total number of the detected break points for the daily mean temperature

data is 296, which means 1.66 breaks per station on average. In the Tn and Tx time

series, 359 and 355 break points were found, respectively (approximately 2 breaks per

station for both variables). The distribution of stations in respect to the number of the

detected  break  points  is  presented  in  Figure  4.  No  breakpoints  were  found  in  52

(29.2%), 38 (21.4%), and 33 (18.5%) series of Tm, Tx, and Tn, respectively. All of

these  three  datasets  have  between  55%  and  66%  of  stations  with  the  number  of

breakpoints from 1 to 3. In the Tm time series, the largest number of breaks (5) was

found in 8 stations. The minimum and maximum air temperature series have one station

each with a maximum number of 7 and 8 breaks, respectively.

The time distribution of the detected inhomogeneities is presented in Figure 5.

For the Tm data, there were found about 3.9 break points per year, and 4.8 and 4.7 for

the  datasets  of  minimum  and  maximum  daily  temperatures.  The  number  of  years

without  detected  breaks  is  5,  6  and  4  for  Tm,  Tx,  and  Tn,  respectively.  The  vast

majority of years (from 42% to 54%) have between 1 and 5 gaps. In the series of mean

temperature, the maximum number of breaks was detected in 1988 (17), in the series of

minimum temperature - in 1987 (16), the maximum - in 2014 (13).

Figure 6 shows a spatial distribution of the climatological stations used in the

study and numbers of the detected breaks in corresponding time series. As can be seen

from these figures, only Tm and Tx have slightly similar spatial patterns of the numbers

of the detected breaks. 



3.3.2. Atmospheric precipitation data

In the obtained series of daily sums of atmospheric precipitation, the number of original

values is considerably larger, compared to air temperature values, and reaches 81.2%.

This  can  be  explained  by  the  significantly  lower  number  of  the  detected  breaks

compared to the air temperature time series. The remaining 18.8% are infilled missing

values (11.1%) and corrected shifts and outliers (7.7%). None of the stations has 100%

original series. However, the number of stations with more than 90% of the original

data is significantly greater than in the temperature series and reaches 57 stations.

In the series of daily atmospheric precipitation, 195 break points were found,

which is approximately 1.1 breaks per station. The distribution of stations according to

the number of break points is shown in Fig. 4a. For 83 (46.6%) series no break points

were detected. 46.6% of series have 1 to 3 breaks. The remaining 6.7% of series have 4

to 6 breaks. For Rr, on average, there are about 2.6 break points per one year (Fig. 5a).

The number of years without detected breaks is 15 (15%). The vast majority of years

(54%) have between 1 and 5 gaps. Despite the reasonable assumption that the earlier

years of the period under study should have a greater number of heterogeneities, the

maximum number of breaks was detected in 2018 (11).

It is interesting to note that the numbers of matches of detected break points with

station  metadata  (within  one-year  span around reported  influencing events)  are  8.1,

23.5,  21.3,  and 35.7% for Rr,  Tm, Tx, and Tn, respectively.  While the numbers of

matches with break points detected by the HOMER software are 33.2, 14.5, 15.8 and

17.8% for Rr, Tm, Tx, and Tn, respectively. Therefore, despite the rather close total

numbers of the detected breaks by means of Climatol and HOMER, their distributions

in time and over stations are quite different.

3.3.3. Verification of the QC and homogenization results

In order to verify the results of the quality control and homogenization procedures, we

performed statistical comparison of raw and quality controlled and homogenized time

series. Based on the general ideas, it is clear that removal of errors and breaks (with

subsequent shifts adjustment) should lead to more self-consistent (more homogeneous

in time and space) fields of the ECVs. One of the ways to show this is to calculate linear

trends  of  the  time  series  before  and  after  QC/homogenization  and  compare  their

statistical and spatial distributions.



In Figure 7, we present box-plots of linear trends (slopes of linear approximation

lines) calculated for annual time series of Rr, Tm, Tx, and Tn before and after the data

processing.  The similar  figures  were  also  obtained for  the  data  with  the  daily  time

resolution, but they were not included in the text. In the raw time series, all missing

values were completed before the trend calculation by means of Climatol run with no

detected break points. This procedure was done in order to have comparable time series

(with the same length). As can be seen from the figure, the QC and homogenization

significantly reduced the width of the trend distributions for all variables and removed

the largest trend outliers. Such reduction means that the homogenized data are more

self-consistent  compared  to  the  raw ones.  Therefore,  for  time  series  of  the  climate

variable the added value of the performed data processing is noticeable.

Since daily Rr, Tm, Tx, and Tn data are often used to calculate climate extreme

indices  and  detect  climate  change  in  extremes  (e.g.,  Randriamarolaza  et  al.,  2021;

Sidenko 2022),  it  is  interesting  to  see  how the  quality  control  and homogenization

influence  the  trend  calculation  in  time  series  of  such  indices.  As  an  example,  we

calculated the yearly time series of TN90p (warm nights) and TX90p (warm days) by

means of the RClimDex software (Zhang et  al.,  2018) and computed corresponding

linear trends. Their spatial distributions over the domain of Ukraine before and after the

QC/homogenization procedures are presented in Figure 8. Figure 9 shows box-plots of

the calculated trends characterizing their statistical distributions. As can be seen from

Figure 8, for the climate extreme indices the data quality check and homogenization

also substantially reduced spatial inhomogeneities (especially in TX90p time series),

making  regular  changes  in  the  climate  extremes  more  reasonable  and  consistent.

However,  a  certain  amount  of  inhomogeneities  (isolated  areas/spots  in  the  trend

patterns), which are difficult to explain from the physical point of view, is still present.

The probable reason for the remaining inhomogeneities might be the relatively large

numbers of missing values in the time series (mainly the first fifteen years of the period

under study). As can be seen from Figure 9, the box-plots of the calculated trends for

TN90p and TX90p were also reduced but not so noticeably as for the time series of the

ECVs.



4. CONCLUSION

In  this  paper,  we  present  the  results  of  the  quality  assurance  and  homogenization

procedures applied to the long daily time series of atmospheric precipitation and air

temperature (mean, max and min) collected in Ukraine. The data of 178 stations which

constitute  the almost  entire  modern national  monitoring system were processed and

analyzed  over  the  75-year  period,  1946-2020.  The  data  sets  were  provided  by  the

official  observational  institution  of  the  Ukrainian  Weather  Service,  the  Central

Geophysical Observatory, in the digital form. However, the series of each considered

climate  variable  contained a  relatively  large  number  of  missing  values.  In  order  to

increase time series completeness, data rescue activities were performed which resulted

in 1,651,930 digitized daily values (mainly for the period of 1946-1960). Besides, a

certain amount of daily data for 2014-2020 for the Crimea meteorological stations were

obtained from the sub-daily values downloaded from the free Internet source.

The quality control check, performed by the well established software INQC,

revealed the relatively small number of errors (not more than 0.01% for each of ECVs)

and the slightly higher number of suspicious data ( 0.09%). All detected errors were

compared  with  available  paper  sources  and  were  corrected/confirmed/removed

depending on the comparison results.

The  homogenization  procedure,  carried  out  by  means  of  the  well  known  R

package Climatol, detected 195, 296, 355 and 359 breaks in Rr, Tm, Tx and Tn time

series, respectively. Such numbers coincide roughly with similar homogenization results

obtained with the HOMER software for the same stations and almost the same period

but for the data with the monthly time resolution.  However, only 33.2, 14.5, 15.8 and

17.8% of the breaks detected by Climatol for Rr, Tm, Tx and Tn data respectively,

coincide with ones detected by HOMER. The reasons for such discrepancies should be

studied additionally in the future.

In  order  to  verify  the  QC/homogenization  results,  we  performed  statistical

comparison of the raw and homogenized time series. The comparison was conducted for

linear trends calculated for both ECVs on the yearly scale and two climate extreme

indices, TN90p and TX90p. The verification procedure demonstrated that the quality

control and homogenization procedures detected and removed errors and breaks very



well,  and air temperature and precipitation fields after the homogenization are more

self-consistent compared to the original raw data.
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Table 1. The main INQC functions/tests used for quality control of the series.
The sign ‘+’ (‘-’) means a test was (was not) applied to a variable

# Function name

Variables to which it is
applied Function definition

Rr Tm Tx Tn

1 weirddate + + + +
Finds invalid dates (such as 1946.01.32 or

1946.13.01) or years outside the range set by the first
and last records in the file

2 duplas + + + + Detects duplicate dates.

3 roundprecip + - - -
Splits data by month and checks if a decimal value is

repeated too many times.

4 repeatedvalue + - - -

Tracks values which repeat too many times and,
given the typical decaying distribution of the variable
(designed for precipitation) are considered too large

to repeat that many times.

5 drywetlong + - - -

Detects episodes of too many consecutive wet or dry
days. Uses a peak over threshold approach and a

Pareto distribution fit over the observed sequences.

6 physics + + + +

Compares the value to a specified threshold,
considered to be the limit of physically possible

values. In some cases this threshold is observational
(e.g. 60°C), in others it is derived from the nature of

the variable (e.g. 0 mm).

7 suspecta-cumprec + - - -
Detects values above a threshold preceded by a given

number of “no precipitation days”

8 paretogadget + - - -
Returns the positions exceeding the value

corresponding to a return period based on Pareto
distribution and peak over threshold approach

9 jumpABS + + + +
Labels interdiurnal differences in absolute values

considered to be too large.

10 jumpQUANT + + + +
Labels interdiurnal differences in quantiles

considered to be too large.

11 flat + + + +
Detects consecutive equal values. Can be adapted to
detect consecutive equal decimal part of the values

12 newfriki + + + +
Isolates extreme values which are not continuous in
the distribution. If the gap is larger than a pre-set big

margin, the value is flagged.

13 IQRoutliers + + + +

Computes outliers centralized around a day, using a
number of days around it and based on the

interquartile range. Creates a tolerance interval
centered around each day of the year, using all the
present values in the empirical distribution for the
designed window. Values outside the interval are

flagged as outliers.

14 toomany + + + +
Splits data by month or year and looks if a value is

repeated too many times

15 rounding + + + +
Splits data by month and looks if a decimal value is

repeated too many times

16 txtn - - + +
Compares daily maximum and daily minimum

temperature and flags those values where Tx is larger
or equal than Tn



Table 2. INQC quality control flags and their meaning
QC Flag Meaning

0 Passed QC

1 Error

2 Almost certain, error

3 Outlier, suspect

4 Collectively suspect

9 Missing value

 

Table 3. The number/percentage of the time series members that passed INQC tests or
were detected as erroneous or suspicious values

QC

Variable

Rr Tm Tx Tn

Number
of

values
%

Number
of

values
%

Number
of

values
%

Number
of

values
%

Passed QC 4,326,684 88.73 4,383,669 89.9 4,361,722 89.45 4,360,942 89.43

Error 15 <0.01 87 <0.01 166 <0.01 502 0.01

Almost certain, error 1,731 0.04 2,162 0.04 1,414 0.03 838 0.02

Outlier, suspect 3,926 0.08 3,236 0.07 3,108 0.06 3,344 0.07

Collectively suspect 4,275 0.09 200 <0.01 238 <0.01 352 0.01

Missing value 539,501 11.06 486,778 9.98 509,484 10.45 510,154 10.46

Total amount 4,876,132 100 4,876,132 100 4,876,132 100 4,876,132 100

Table 4. The number of checked, corrected, confirmed and deleted by INQC true errors

Value
Variable

Total
Rr Tm Tx Tn

Checked 15 87 166 502 770

Corrected 14 61 90 389 554 

Confirmed - 26 76 111 213 

Deleted 1 - - 2 3 



Table 5. The number of breakpoints detected with different Climatol parameters
compared to breakpoints found in the previous studies (Osadchyi et al., 2017; Skrynyk

et al., 2018; Osadchyi et al., 2022) and station metadata

EC
V

Tunable Climatol parameters and detected
breakpoints in four sensitivity tests

Detected
breakpoints
(HOMER) 

Reported
influencing

events
(metadata)

test #1 test #2 test #3 test #4

Rr

dz.max=11
snht1=35
snht2=80

dz.max=11
snht1=18
snht2=40

dz.max=11
snht1=9
snht2=20

dz.max=11
snht1=13
snht2=10

187

221

8 42 413 195

Tm

dz.max=10
snht1=55
snht2=220

dz.max=10
snht1=28
snht2=110

dz.max=10
snht1=14
snht2=55

dz.max=10
snht1=15
snht2=35

304

15 55 329 296

Tx

dz.max=12
snht1=70
snht2=250

dz.max=12
snht1=35
snht2=125

dz.max=12
snht1=18
snht2=63

dz.max=12
snht1=20
snht2=65

367

8 84 445 355

Tn

dz.max=8
snht1=55
snht2=280

dz.max=8
snht1=28
snht2=140

dz.max=8
snht1=14
snht2=70

dz.max=8
snht1=16
snht2=32

377

19 74 411 359



FIGURE 1.  Locations of  the climatological/weather  stations of  Ukraine used in  the
study

FIGURE 2. Heat maps of the daily time series completeness after the data rescue: (a)
atmospheric precipitation; (b) mean air temperature; (c) maximum air temperature; (d)
minimum air temperature. Station IDs (#) along the vertical axes are provided according
to the station list (SM1).



FIGURE 3. The results of Climatol applied in the exploratory mode to the monthly
mean air temperature time series.

FIGURE 4. Distribution of stations with respect to the number of break points detected
in the time series of: (a) Rr, (b) Tm, (c) Tx and (d) Tn.



FIGURE 5. The number of breakpoints per year for the period of 1946-2020 in the time
series of: (a) Rr, (b) Tm, (c) Tx and (d) Tn.

FIGURE 6. Spatial distribution of the climatological stations on the territory of Ukraine
and numbers of the detected break points in the corresponding time series: (a) Rr, (b)
Tm, (c) Tn and (d) Tx.



FIGURE 7. Boxplots of the linear regression coefficients (trends) in the raw (left) and
homogenized (right) yearly time series: (a) Rr, (b) Tm, (c) Tx and (d) Tn.



FIGURE 8. Spatial distribution of the calculated trends in TN90p and TX90p before
(left) and after (right) QC/homogenization.

FIGURE 9. Boxplots of the calculated trends in (a) TX90p and (b) TN90p before (left)
and after (right) QC/homogenization.
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