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ABSTRACT: Statistical downscaling (SD) of climate change projections is a key piece for impact and adaptation studies
due to its low computational expense compared to dynamical downscaling, which allows exploration of uncertainties
through the generation of large ensembles. SD has been extensively evaluated and applied in the extratropics, but few
examples exist in tropical regions. In this study, several state-of-the-art methods belonging to different families have been
evaluated for maximum/minimum daily temperature and daily accumulated precipitation (both from the ERA5 at 0.258) in
two regions with very different climates: Spain (midlatitudes) and Central America (tropics). Some key assumptions of SD
have been tested: the strength of the predictor–predictand links, the skill of different approaches, and the extrapolation
capability of each method. It has been found that relevant predictors are different in both regions, as is the behavior of
statistical methods. For temperature, most methods perform significantly better in Spain than in Central America, where
transfer function (TF) methods present important extrapolation problems, probably due to the low variability of the train-
ing sample (present climate). In both regions, model output statistics (MOS) methods have achieved the best results for
temperature. In Central America, TF methods have achieved better results than MOS methods in the evaluation in the
present climate, but they do not preserve trends in the future. For precipitation, MOS methods and the extreme gradient
boost machine learning method have achieved the best results in both regions. In addition, it has been found that, although
the use of humidity indices as predictors improves results for the downscaling of precipitation, future trends given by statis-
tical methods are very sensitive to the use of one or another index. Three indices have been compared: relative humidity,
specific humidity, and dewpoint depression. The use of the specific humidity has been found to lead to trends given by the
downscaled projections that deviate seriously from those given by raw global climate models in both regions.
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1. Introduction

Global warming is unequivocal according to the Intergovern-
mental Panel on Climate Change (IPCC), and current and future
climate change strongly depend on human actions (IPCC 2021).
The effects of climate change in different regions are a funda-
mental piece for impact and adaptation studies. Nevertheless,
global climate models (GCMs), the main tool to simulate future
climate, often have too coarse a resolution for this purpose, and
some type of downscaling is needed (Charles et al. 2004; Wilby
et al. 2004; Schoof 2013). There are two main strategies for
downscaling: dynamical downscaling and statistical downscaling
(SD). Dynamical downscaling relies on the same physical princi-
ples as GCMs, and it mainly consists of nesting a high-resolution
regional climate model in a GCM. On the other hand, SD is
based on the existence of empirical–statistical relationships be-
tween large-scale predictors and local-scale predictands, which

are assumed to be maintained under future climate change. Both
approaches present advantages and disadvantages, and they
have been widely reviewed (Wilby and Wigley 1997; Charles
et al. 2004; Wilby et al. 2004; Rummukainen 2010; Trzaska and
Schnarr 2014). For example, SD does not always ensure physical
consistency, opposite to dynamical downscaling. On the other
hand, SD is in general less computationally expensive compared
to dynamical downscaling. Thus, SD allows exploration of uncer-
tainties through large ensembles, which has promoted its use for
impact and adaptation studies (Trzaska and Schnarr 2014).

There is a huge variety of statistical downscaling models
(SDMs), belonging to different families (see Wilby et al. 2004;
Trzaska and Schnarr 2014; Maraun and Widmann 2018). In
the perfect prognosis (PP) approach, SDMs are calibrated es-
tablishing statistical relationships between predictors given by
a reanalysis and observations, and then, they are applied over
predictors simulated by GCMs. PP relies on the assumptions
that predictors are well simulated by GCMs both in present
and future climates and that a strong link between predictors
and predictands exists. On the other hand, the model output
statistics (MOS) approach corrects biases from GCMs by ad-
justing different aspects of the simulated distributions and
usually assuming the stationarity of model biases in the future.
Finally, weather generators (WGs) are stochastic models able
to produce synthetic series matching their marginal and tem-
poral aspects with climatological statistics conditioned on
properties given by GCM simulations.
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The European Union (EU) Cooperation in Science and
Technology (COST) Action VALUE (Maraun et al. 2015)
proposed a comprehensive framework for evaluating and in-
tercomparing the different SD approaches. This framework
consists of the evaluation of different aspects (marginal, tem-
poral, spatial, and intervariable) under different experiments:
using “perfect” predictors from a reanalysis, using “imperfect”
predictors from GCMs, and using predictands from regional
climate models as “pseudo-observations.” In this context, a
large ensemble of SDMs belonging to different families was
evaluated under a perfect predictor experiment approach (i.e.,
using perfect predictors from a reanalysis), and the key find-
ings and remaining questions were summarized byMaraun et al.
(2019). This comprehensive evaluation exercise was performed
over different stations all over Europe, capturing very different
climates. Nevertheless, no tropical region was included in it.

SD has been extensively evaluated and applied in the extra-
tropics, and comprehensive studies such as the aforementioned
VALUE have intercompared the main families of SDMs. While
SD has also been evaluated and applied in tropical regions (see,
e.g., Cavazos and Hewitson 2005; Ramseyer and Mote 2016), no
intercomparison exercise between SDMs representative of the
different families has been found. Some key limitations for SD
in the tropics have been suggested. As pointed out by Manzanas
et al. (2015), while in extratropical regions a large fraction of
the local climate variability can be explained by well-simulated
large-scale structures, characterized by the quasigeostrophic
coupling between wind and mass fields, such as extratropical cy-
clones and their associated fronts, atmospheric drivers in the
tropics operate in finer scales and are poorly simulated.

In this study, we have performed a comparative evaluation
of the different families of SDMs over one tropical region and
another one in the midlatitudes, with the purpose of analyzing
the suitability of SD in the tropics and which methods are
more skillful in each region. The objective of this paper is to
present a first overview on the matter to be used as a general
guide by the downscaling community.

This work is organized as follows. In section 2, the datasets
used are described. In section 3, a brief introduction to the
SDMs employed and the diagnostics performed is given. In
section 4, results are presented. In section 5, the main conclu-
sions are summarized.

2. Data

For this study, we have chosen two regions especially vul-
nerable to climate change, where a future drier climate is pro-
jected by GCMs: Spain, as part of the Mediterranean Sea
region, and Central America (see Fig. 1). This choice has
been motivated as an extension of a comprehensive evalua-
tion recently performed for Spain (Hernanz et al. 2022a,d,e)
to Central America, where the Spanish Meteorological Agency
(AEMET) collaborates in the generation of regional climate
change information through the EUROCLIMA1 project (Com-
isión Europea 2021; https://euroclimaplus.org/).

As predictands, we have used maximum/minimum daily
temperatures and daily accumulated precipitation from the
fifth major global reanalysis produced by the European Cen-
tre for Medium-Range Weather Forecasts (ECMWF; ERA5;
Hersbach et al. 2020) with a spatial resolution of 0.258,
consisting of 845 points over Spain and 828 over Central
America. Both regions present complex topography, so the
resolution here used (0.258) is not expected to accurately re-
produce local climate in the finer scales. While the use of a
reanalysis introduces an additional source of uncertainty, the
lack of available observations has motivated its use instead.
Predictors have been taken from the same reanalysis but with
a resolution of 1.58 and as daily averages using data from the
0000, 0600, 1200, and 1800 UTC and from the 10 GCMs listed
in Table 1, all of them participants in phase 6 of the Coupled
Model Intercomparison Project (CMIP6; Eyring et al. 2016),
interpolated from their original resolutions to 1.58 using a
bilinear interpolation and as mean daily values.

FIG. 1. Target regions (blue) and spatial domains for synoptic analogy fields (red outline) in (left) Spain and (right) Central America.
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SDMs have been trained in 1979–2005 and applied over re-
analysis in 2006–20 for evaluation and also over GCMs in
2015–2100, under the illustrative scenario SSP5-8.5 (see IPCC
2021). A reference period (1981–2010) has been used to stan-
dardize predictors and as a base period for future climate
change.

The initial pool of potential predictors is listed in Table 2, and
after an analysis of their correlations with the target variables,
Table 3 shows the list of selected predictors for each region and
target variable. For the analog method (see section 3), different
fields have been used in each region. For Spain, where synoptic
pressure structures strongly condition the large-scale flow and
the local weather, geopotential at 500 hPa has been used (see,
e.g., Dünkeloh and Jacobeit 2003) over the domain 498N, 188W;
29.58N, 128E. For Central America, the zonal and meridional
wind components at 700 and 250 hPa and the specific humidity at
700 hPa have been used instead, based on Ribalaygua et al.
(2018), over the domain 23.58N, 100.58W; 18N, 70.58W. See the
study areas in Fig. 1. These domains have been selected by add-
ing a large-enough area around the study region so the synoptic
situations are captured, but for a deeper analysis, the impact on
considering different synoptic domains might constitute an inter-
esting study. To analyze the role of humidity, different humidity
indices have been combined with the core of predictors listed in
Table 3. The suffixes “hur,” “hus,” and “Dtd” have been added
to the SDM names when including relative humidity, specific hu-
midity, and dewpoint depression, respectively.

To characterize the extremely different climates of the two
regions, Fig. 2 shows their annual cycle for monthly averaged

maximum/minimum temperature and monthly accumulated
precipitation. In Spain, temperatures show a marked season-
ality, with maximum and minimum temperatures ranging
from 108 and 28C in winter to 308 and 168C in summer, respec-
tively. On the other hand, in Central America, temperatures
are almost constant throughout the year, around 258–308C for
maximum temperature and 208C for minimum temperature.
Precipitation in Spain presents a marked dry season in summer
with a minimum around 20 mm month21 and two peaks in
spring and autumn with a maximum of almost 80 mm month21.
For Central America, the precipitation regime is completely dif-
ferent. A strong wet season with up to 300 mm month21 ex-
tends from May to October, and a dry season is present for
the rest of the year, reaching a minimum of around 50 mm in
February and March.

3. Method

In the following sections, the downscaling methods and
diagnostics are described.

a. Downscaling methods

Several SDMs belonging to the different families have been
used in this study (see Table 3). The election of these specific
methods is subjective, and other methods or versions of the dif-
ferent families are of course possible. Nevertheless, the methods
included here should cover the main approaches commonly used
in statistical downscaling. These methods and/or very similar ver-
sions of them have been used in previous evaluation exercises in

TABLE 1. GCMs from CMIP6: Model name, institution, horizontal resolution, and reference.

Model Institution Resolution References

ACCESS-CM2 CSIRO and Bureau of Meteorology (BoM), Australia 1.98 3 1.38 Bi et al. (2020)
CanESM5 Canadian Centre for Climate Modelling and Analysis, Canada 2.88 3 2.88 Swart et al. (2019)
EC-EARTH3 EC-Earth Consortium, Europe 0.78 3 0.78 Döscher et al. (2022)
INM-CM5-0 Institute of Numerical Mathematics, Russia 28 3 1.58 Volodin et al. (2017)
INM-CM4-8 Institute of Numerical Mathematics, Russia 28 3 1.58 Volodin et al. (2013)
IPSL-CM6A-LR L’Institut Pierre-Simon Laplace (IPSL), France 2.58 3 1.38 Boucher et al. (2020)
MIROC6 Research Center for Environmental Modeling and Application, Japan 1.48 3 1.48 Tatebe et al. (2019)
MPI-ESM1-2-LR Max Planck Institute (MPI) for Meteorology, Germany 0.98 3 0.98 Mauritsen et al. (2019)
MPI-ESM1-2-HR Max Planck Institute (MPI) for Meteorology, Germany 1.98 3 1.98 Müller et al. (2018)
MRI-ESM2-0 Meteorological Research Institute, Tsukuba, Japan 1.18 3 1.18 Yukimoto et al. (2019)

TABLE 2. Initial pool of predictors.

Name Description

psl Mean sea level pressure
uas; vas Eastward and northward surface wind components
tas Surface temperature
ua1000, ua850, and ua500; va1000, va850, and va500 Eastward and northward wind components at 1000, 850, and 500 hPa
ta1000, ta850, and ta500 Temperature at 1000, 850, and 500 hPa
zg1000, zg850, and zg500 Geopotential at 1000, 850, and 500 hPa
hur1000, hur850, and hur500 Relative humidity at 1000, 850, and 500 hPa
hus1000, hus850, and hus500 Specific humidity at 1000, 850, and 500 hPa
Dtd1000, Dtd850, Dtd500 Dewpoint depression at 1000, 850, and 500 hPa
vort1000, vort850, and vort500; div1000, div850, and div500 Vorticity and divergence at 1000, 850, and 500 hPa
K_index; TT_index Instability indices: K index and total totals index
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Spain (Gutiérrez et al. 2013; San-Mart́ın et al. 2017; Hernanz et al.
2022d) and Europe (Maraun et al. 2015; Gutiérrez et al. 2019),
and results here presented are, in general, consistent with the
mentioned studies. Because of the particularities of the down-
scaled variables, different methods are used for temperature and
precipitation.

1) RAW

The “RAW” method is not really a downscaling method,
but a nearest-neighbor interpolation, included to analyze the
added value of the statistical downscaling.

2) MOS

Model output statistics methods correct model biases in dif-
ferent ways. The MOS methods included here are different
versions of quantile mapping, in which the adjustment of the
simulated distributions is done quantile by quantile. MOS
methods use as input the target variable itself, but in coarse
resolution, and perform an adjustment on its distribution to
correct systematic biases. For each target point, the predictor
is taken, interpolating the four nearest grid points using a bi-
linear interpolation. The major drawback of MOS methods is
the assumption of model bias stationarity, although some
methods do not rely on this assumption. Two different ver-
sions of quantile mapping have been included. The empirical
quantile mapping (QM) method, as in Themeßl et al. (2011),
compares the observed and simulated distributions in a

historical period to detect systematic biases. Then, it assumes
stationarity on the bias under future conditions and applies
the detected corrections to the future simulated series. This
version is known to affect trends for variables with a marked
signal of change. The quantile delta mapping (QDM) method
(Cannon et al. 2015), where a delta change is applied for each
quantile of the simulated and observed series so trends are
preserved in all quantiles and no assumption on the transfer-
ability of biases is made, compares the simulated distributions
in the future and a historical period, detecting the delta
change projected for each quantile. Then, it applies those
delta changes to the observed distribution. Both QM and
QDM operate at point level (i.e., a different adjustment is
done for each target point).

3) ANALOGS

Analog methods (Lorenz 1969; Zorita and von Storch 1999)
are based on the assumption that large-scale synoptic patterns
condition the local weather, and they search for analog synop-
tic situations in the past. One major drawback of analog meth-
ods is that they cannot predict values outside of the observed
sample, which makes them unsuitable for temperature. There
is also a huge variety of analog versions. We have limited the
use of analogs to precipitation (although for temperature, a
hybrid method, which could be categorized as a two-step ana-
log approach, has been included). This method, ANA-SYN-
1NN, consists of a simple “best analog” approach, in which the

TABLE 3. Selected predictors for each target variable and region.

Spain Central America

tasmax; tasmin ta1000, ta850, and tas (only if indicated as sfc) ta1000, ta850, and tas (only if indicated as sfc)
pr psl, zg1000, zg850, zg500, K_index, TT_index, and pr

(only for XGB)
ua1000, ua850, va1000, va850, vort850, div850,

K_index, TT_index, and pr (only for XGB)

hur1000, hur850, and hur700 (only if indicated as hur) hur1000, hur850, and hur700 (only if indicated as hur)
hus1000, hus850, and hus700 (only if indicated as hus) hus1000, hus850, and hus700 (only if indicated as hus)
Dtd1000, Dtd850, and Dtd700 (only if indicated as Dtd) Dtd1000, Dtd850, and Dtd700 (only if indicated as Dtd)

FIG. 2. Monthly observed maximum/minimum temperatures and precipitation climatology (spatially averaged) for (left) Spain and (right)
Central America in the reference period (1981–2010).
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target variable is taken from the most similar analog day in the
historical database. The similarity of the analog days is mea-
sured over the synoptic analogy fields (see the spatial domain
used in Fig. 1), previously transformed using a principal com-
ponent analysis (PCA), keeping 95% of their explained vari-
ance, and using a Euclidean distance as similarity metric.
Thus, for each coarse-resolution simulated day, this method
performs the following steps in order: 1) transform the synop-
tic analogy fields using PCA, 2) search for similar days in the
past, and 3) select the most similar day and assign its high-
resolution observations to the problem day.

4) TF

Transfer function (TF) methods are based on the existence
of statistical relationships between large-scale predictors and
local predictands (Sailor and Li 1999; Wilby et al. 2002),
which are detected and calibrated in the present and applied
over future simulations. These relationships can be tackled us-
ing simple linear models or complex nonlinear machine learn-
ing approaches. In the particular implementations presented
here, predictors are taken, for each target point, from the
four nearest grid points using a bilinear interpolation. A dif-
ferent relationship is calibrated for each target point. TF
major drawbacks are the assumptions of stationarity of the
predictor–predictand relationships and of predictors being
well simulated by GCMs.

5) LINEAR METHODS

For linear methods, two classic methods have been in-
cluded: multiple linear regression (MLR) for temperature and
the generalized linear model (GLM-LIN; Wilby et al. 2002)
for precipitation. MLR performs a linear regression between
all predictors and each predictand. For precipitation, due to
its dual nature (precipitation occurrence and intensity), two
models are combined. The precipitation occurrence is mod-
eled by a logistic regression using a threshold of 0.1 mm to
distinguish between dry and wet days. Then, the precipitation
intensity for wet days is obtained by an MLR (forcing to posi-
tive values). Additionally, for temperature, a hybrid multiple
linear regression based on analog days (MLR-ANA) ap-
proach has been included. This method performs the follow-
ing steps in order: 1) for each simulated day, it transforms the
synoptic analogy fields using PCAs; 2) it searches for similar
days in the past; and 3) for each target point of the problem
day, it calibrates a multiple linear regression using only the
analog days. This way, it iterates through all simulated days
and through all target points for each simulated day. These
methods are limited to capture linear relationships, but pre-
dictor–predictand relationships can be nonlinear. For this rea-
son, there is a large variety of machine learning techniques
that can be used instead.

6) MACHINE LEARNING

For machine learning methods, we have included artificial
neural networks (ANNs) for temperature and extreme gradient
boost (XGB) for precipitation. ANNs (McCulloch and Pitts
1943; Rosenblatt 1958) are supervised learning algorithms based

on the biological neurons’ behavior, imitating them by nodes,
which work as perceptrons (Rosenblatt 1958). The ANN used
here consists of a multilayer perceptron, where these nodes are
organized in several layers, the input layer, the output layer, and
a set of hidden layers, which communicate with adjacent layers.
Each node or neuron receives a signal from the nodes of the pre-
vious layer. The node adds the received signals with different
weights, and then, the combined signal is transformed through
an activation function. If the result exceeds a certain threshold,
the node sends a signal to the next layer. Otherwise, the node
sends no signal to the next layer. Different activation functions
are possible, the sigmoid and the rectified linear function being
some common choices. The training of the network consists in
establishing the weights for each pair of neurons, which is
achieved by an iterative process in which the signals are propa-
gated forward and errors are sent backward until a certain crite-
rion is reached. During their training, ANN algorithms can get
trapped in local minima, which is one of their major drawbacks,
along with their high computational training cost. On the other
hand, ANNs have proven to be a very powerful tool to tackle
complex nonlinear problems. For precipitation, a different ma-
chine learning algorithm has been used: XGB (Chen and Guest-
rin 2016). XGB is an algorithm based on decision trees, in which
a set of decision trees is sequentially trained, each using as input
data the errors of the previous tree. This method starts with a
single tree, which is usually not enough to reach good results.
Then, a second tree is added to the sequence, and this second
tree is trained with the residuals from the first tree. More trees
are added to the ensemble until residuals reach certain criteria.
This method is less computationally demanding than ANNs.
Additionally, it can combine predictors of different natures (con-
tinuous and categorical), and it does not need predictors to be
standardized. Thus, this method allows incorporation of precipi-
tation as predictor. On the other hand, one important limitation
of this method is that it cannot predict values out of the training
range. This method, similar to GLM-LIN, first tackles the wet/
dry classification using a threshold of 0.1 mm and then the pre-
cipitation intensity on wet days. Different methods have been
used for temperature and precipitation. XGB has been chosen
for precipitation because of its capability of incorporating pre-
dictors of different natures, with no standardization needed,
which allows the use of the low-resolution precipitation variable
itself. On the other hand, XGB cannot predict values out of the
observed range, which has promoted the use of ANNs for tem-
perature instead. Machine learning methods are sensible to the
use of different architectures, hyper parameters, etc., and they
require a process of tuning. For this study, we have used the de-
fault configuration of the open source software pyClim-SDM
(Hernanz et al. 2022c; available at https://github.com/ahernanzl/
pyClim-SDM/), which has been established after several evalua-
tion exercises with different datasets. Nevertheless, different set-
ups might obviously lead to different results.

7) WEATHER GENERATOR

There are also a huge variety of WGs (see, e.g., Wilks and
Wilby 1999). For temperature, we have used a parametric WG
based on downscaling monthly statistics and then generating
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daily data using a normal distribution (WG-PDF; Erlandsen
et al. 2020; Benestad 2021). In this method, first the monthly
mean temperatures are calculated both for the observed and
simulated series for each target point. Then, a linear regression
is established between the monthly values. And finally, daily
data are produced following a normal distribution for each
month. A different calibration is established for each target
point. For precipitation, WG-NMM has been used, which con-
sists of a nonparametric weather generator following a first-
order two-state (wet/dry) Markov chain (see Richardson 1981).
Both the transition probabilities and the empirical distributions
used for the intensity are conditioned on the precipitation given
by the reanalysis/models. For this method, the simulated series
is first used to classify in intervals of precipitation. For each in-
terval, the observed series is then used to calculate the probabil-
ities of transition between dry and wet days and the empirical
distributions for the intensity of precipitation. Then, for each
day of the simulated series to be downscaled, the wet/dry state
is defined by the state of the previous day and by the probability
of transition to the new state, and the intensity of precipita-
tion is generated following the corresponding empirical distri-
bution. A different calibration is established for each target
point, using predictors from the four nearest grid points bili-
nearly interpolated.

b. Diagnostics

This study analyzes three main aspects related to statistical
downscaling: 1) the link between different potential predic-
tors and each predictand, 2) the skill of the different statistical
methods under the present climate, and 3) their capability to
preserve future trends given by GCMs.

First, a search for relevant predictors is performed, using as
metric the Spearman’s rank correlation coefficient in 1979–2020
between a pool of potential predictors (Table 2) and each of
the three target variables. We have included among the poten-
tial predictors not only direct model output variables, such as

temperature, wind components, humidity, etc., but also derived
predictors, such as vertical stability or low-level convergence,
physically linked with predictands like convective precipitation.
The correlation is calculated for the daily series of each point.
Figures 3 and 4 show the correlation of all points in the form of
boxplots. After this analysis, relevant predictors for each target
variable and region have been selected to train the downscaling
methods (Table 3).

Then, SDMs have been evaluated in a historical period us-
ing predictors from a reanalysis, and different metrics have
been included. First, SDM accuracy at the daily level has been
evaluated. For maximum and minimum temperatures, the
root-mean-square error (RMSE) has been calculated between
the downscaled and observed daily series for each point. Fig-
ure 5 shows those RMSEs for all points in the form of box-
plots. Then, in order to reduce the score to a single value so
SDMs can be more easily compared, the spatial average of all
grid points has been computed (Table 4). For precipitation,
due to its non-Gaussian distribution and the large number of
zeros, RMSE is not a suitable score. Instead, the Spearman’s
rank correlation coefficient between the downscaled and the
observed daily series of each point has been calculated, as
well as the bias in the variance of the daily series. The bias in
the variance is calculated in relative terms, as 100 3 (var_down–
var_obs)/var_obs. These two metrics are shown for all points in
the form of boxplots (Fig. 6). To compare SDMs, correlations
have been spatially averaged in Table 5. Then, the bias in the
mean values over the whole testing period for the three target
variables has been calculated. This bias has been computed for
each point as mean_down–mean_obs for maximum and mini-
mum temperatures and as 100 3 (mean_down–mean_obs)/
mean_obs for precipitation. The bias for all points is shown in
the form of boxplots in Fig. 7. For precipitation, three other mar-
ginal aspects have been evaluated: the wet day frequency (R01),
the mean precipitation on wet days (SDII), and the intense
precipitations (R95p). A wet day is defined as a day with

FIG. 3. Spearman’s rank correlation coefficients between daily series of the initial pool of predictors from Table 2 and maximum tempera-
ture in (left) Spain and (right) Central America, calculated in the training period (1979–2005). Each box contains one value per point.

J OURNAL OF AP P L I ED METEOROLOGY AND CL IMATOLOGY VOLUME 62742

Brought to you by AGENCIA ESTATAL DE METEOROLOGIA | Unauthenticated | Downloaded 07/14/23 10:28 AM UTC



precipitation greater than or equal to 1 mm, and R95p cor-
responds to the total precipitation on very wet days, with a
very wet day defined by the 95th percentile of the wet days
in the reference period. For each of these three indices,
the bias has been calculated in relative terms (same as for
the mean precipitation), and they have been included in the
form of boxplots in Fig. 8.

Finally, SDM behavior in the future climate has been ana-
lyzed. Although SDMs can reduce the scale of GCMs to finer
resolutions, they should preserve trends on spatial scales
GCMs operate on. The analysis performed here consists of a
comparison of the trends given by raw GCMs with trends
given by SDMs, spatially averaged in large regions. For this
purpose, SDMs have been applied over the 10 GCMs in Table 1,

both in a reference period and under SSP5-8.5. For each
GCM and SDM, the anomaly compared to a reference pe-
riod has been compared for each point. Then, those anoma-
lies have been spatially averaged for the whole region, and
they have been presented in the form of evolution graphs
(Figs. 9–12), comparing the multimodel ensemble of raw
GCMs with the multimodel ensemble for each individual
SDM. Good results in this trend analysis do not guarantee
good results in finer scales. Nevertheless, this simple analy-
sis is enough to raise significant modifications in trends from
raw GCMs by several downscaling methods. It should be
clarified that this analysis does not intend to provide reliable
future projections, because no evaluation of GCMs have
been performed. The only objective of this analysis is to

FIG. 5. RMSE of temporal series of daily maximum temperature (8C) in (left) Spain and (right) Central America in the testing period
(2006–20). Each box contains one value per point.

FIG. 4. As in Fig. 3, but for precipitation.
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ensure that SDMs are able to preserve trends given by GCMs,
no matter how realistic or unrealistic those trends are.

4. Results

In the following sections, results for the three main lines of
the study (search for relevant predictors, evaluation of SDMs
under present conditions, and evaluation of future trends) are
presented.

a. Predictor selection

First, the strength of the predictor–predictand relationships
has been evaluated using the Spearman’s rank correlation co-
efficient. This has been done for the initial pool of predictors
from Table 2 with each of the target variables. For maximum
temperature (Fig. 3), significant differences are appreciated
between Spain and Central America. While in Spain there is a
strong (and expected) correlation with temperature both
on surface and in low-pressure levels (1000 and 850 hPa), in
Central America correlations are much lower. As has been
mentioned in section 1, the link between large-scale structures
and local weather is weaker in the tropics, so lower correla-
tions were expected. Additionally, these poor correlations can
be partially explained because of the low variance for temper-
ature in Central America (Fig. 2). For minimum temperature,
results are similar (Fig. S1 in the online supplemental material).
For precipitation, Fig. 4 reveals important differences between
the two study regions. While in Spain the most relevant predic-
tors are those related to pressure structures [mean sea level
pressure (psl); geopotential height (zg) at different levels], hu-
midity (relative humidity and dewpoint depression), and insta-
bility (K index and total totals index), in Central America
pressure is not relevant, and most of the predictive power re-
lies on humidity (now also including the specific humidity) and
instability indices. This was also expected, as it is known that
large-scale pressure structures condition the generation of ex-
tratropical cyclones and their associated fronts, which can ex-
plain a large proportion of the precipitation in Spain. And
humidity and instability were also expected to be relevant pre-
dictors in Spain due to their role in convective precipitation.
The correlation with instability indices in Spain is higher dur-
ing JJA (not shown), when precipitation is mainly of a convec-
tive nature. On the other hand, results in Central America

were also expected, because it is known that precipitation in
that region is mainly convective, so the role of humidity and in-
stability is very important, and vorticity and divergence in the
low levels also gain relevance. One interesting finding is that,
comparing relevant predictors for precipitation in both regions,
correlations are higher in Central America (opposite of temper-
ature). This is a good indicator for the potential success in statis-
tical downscaling of precipitation in Central America.

After this initial exploration of the potential predictors
(Table 2), a selection for each region has been made (Table 3).
For maximum and minimum temperatures, temperatures at
1000 and 850 hPa have been used. Additionally, because sur-
face temperature is influenced by atmosphere–ground interac-
tions and exchanges of heat in different forms, which might
cause differences to emerge among GCMs due to different
physics schemes, we have decided to analyze its inclusion as a
predictor separately. Thus, the suffix “sfc” in the downscaling
method names indicates the use of surface temperature as a
predictor (in addition to the mentioned temperature in low
levels). For precipitation, different sets of predictors have
been used for each region. In Spain, the predictors used are
the mean sea level pressure; geopotential at 1000, 850, and
500 hPa; and instability indices (K and total totals). In Central
America, the predictors used are the wind components at
1000, 850, and 500 hPa; vorticity and divergence at 850 hPa;
and the same instability indices. One specific method (XGB)
incorporates precipitation as a predictor as well, a highly non-
Gaussian variable problematic for regressions in general, but
not for this particular method. Two main differences exist be-
tween the two TF methods used for precipitation: 1) GLM is a
linear model, but XGB can simulate nonlinear relationships,
and 2) XGB has been fed with an additional predictor, the
precipitation itself. Thus, differences between these two SDMs
(shown in sections 4b and 4c) cannot be attributed exclusively
to the methods themselves, but also to the use of different in-
formation. On the other hand, while having deprived XGB
from the precipitation input would have made a fairer compar-
ison with the GLM, the specific nature of XGB allows incor-
poration of that information, which is an important strength of
this method that must be highlighted. And humidity indexes
have been explored separately in order to analyze both their
added value and their impact on future trends because of
known issues in the transferability of the statistical methods

TABLE 4. SDM methods used for maximum and minimum temperatures (T column) and precipitation (P column).

Family Short name Name T P

} RAW No downscaling; nearest grid point x x
MOS QM Quantile mapping x x

QDM Quantile delta mapping x x
Analogs ANA-SYN-1NN Analog x
Linear methods (TF) MLR Multiple linear regression x

MLR-ANA Multiple linear regression based on analog days x
GLM-LIN Generalized linear model x

Machine learning (TF) ANN Artificial neural networks x
XGB Extreme gradient boost x

Weather generator WG-PDF Weather generator conditioned on monthly statistics x
WG-NMM Weather generator based on a nonhomogeneous Markov model x
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due to the use of one or another humidity index (Fu et al.
2018). Thus, the suffixes hur, hus, and Dtd in the downscal-
ing method names indicate the use (in addition to the men-
tioned predictors for each region) of relative humidity,
specific humidity, and dewpoint depression, respectively, at
1000, 850, and 700 hPa.

b. Evaluation of SDMs under present conditions

Once SDMs have been trained using these predictors, they
have been evaluated in a historical period over a reanalysis.
For maximum temperature, the sizes of the boxes at Fig. 5 re-
veal how the performance of each method is more sensitive to
each specific location in Central America than in Spain. While
errors in Spain, by each method, are similar for all points, in
Central America errors extend to larger ranges. In Spain,
WG-PDF presents larger errors than in Central America.
This is expected due to its stochastic nature (it produces daily

data based on monthly statistics, so bad scores at daily level
are expected) and the low variability for temperature in Cen-
tral America (which explains why errors in Central America
are lower than in Spain). For minimum temperature, results
are similar (Fig. S2 in the online supplemental material).
Then, these RMSEs have been spatially averaged and are pre-
sented in Table 5. In Spain, methods with lower RMSEs are
MOS methods, with errors of 0.88C both for maximum and
minimum temperatures. Transfer function methods present
larger errors, similar for MLR and ANN (and slightly better
for MLR-ANA and with the inclusion of surface temperature
as a predictor). For Central America, errors by MOS methods
are larger than in Spain, especially for maximum temperature
(1.88–1.98C). And the lowest errors are achieved by MLR-
ANA (1.38C for maximum temperature and 0.78C for mini-
mum temperature), with no difference when including surface
temperature as a predictor.

FIG. 6. (top) Spearman’s rank correlation coefficient between the downscaled and observed series and (bottom) relative bias (%) in the
variance of the downscaled series for daily precipitation in (left) Spain and (right) Central America in the testing period (2006–20). Each
box contains one value per point.
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For precipitation, the correlation and the variance of the
daily series have been analyzed (Fig. 6). In both regions,
XGB gets the highest correlations, followed by some MOS
methods. On the other hand, XGB shows an underestimation
of the variance, while MOS methods reproduce it better. Nev-
ertheless, the underestimation of the variance is a limitation
common to TF methods that can be alleviated through a pos-
terior bias correction. Table 6 shows the spatially averaged
correlations for each method and region. The highest correla-
tions are achieved by XGB in both regions, and the use of
humidity predictors improves correlations only moderately

(from 0.868 to 0.871–0.873 in Spain and from 0.906 to
0.906–0.908 in Central America). On the other hand, for the
GLM-LIN, the use of humidity predictors improves correla-
tions more clearly (from 0.710 to 0.728–0.732 in Spain and
from 0.766 to 0.786–0.805 in Central America). This can be
explained due to the use of precipitation as a predictor by
XGB, so it is less sensitive to other predictors.

Then, we have analyzed the bias in the mean values of the
three target variables. Figure 7 shows how all methods clearly
improve the representation of the mean values, both for tem-
perature and precipitation, by the low-resolution reanalysis.
For temperature, all methods achieve very similar biases,
close to 08C, and for precipitation, the analog method and the
GLM present higher biases than the other methods (and
lower when the relative humidity or the dewpoint depression
are included). For precipitation, three more marginal aspects
have been evaluated: R01, SDII, and R95 (Fig. 8). The num-
ber of wet days and the mean precipitation on them are well
simulated by the analog method and XGB. On the other
hand, extreme precipitation is best captured by MOS and
WG methods. The underestimation of the extreme precipita-
tion by TF methods is a well-known issue due to their under-
estimation of the variance. On the other hand, results for R01
and SDII do not align with Gutiérrez et al. (2019), where a
large variety of statistical methods were intercompared over
several locations along Europe. Thus, no general conclusion
should be made about these indices, as the performance of
SDMs appears to be sensitive to the datasets used.

FIG. 7. Bias [absolute for temperature (8C) and relative for precipitation (%)] for the mean values (averaged over the whole testing
period, 2006–20) of (left) maximum temperature, (center) minimum temperature, and (right) precipitation in (top) Spain and
(bottom) Central America. Each box contains one value per point.

TABLE 5. Spatially averaged RMSE (8C) for maximum and
minimum daily temperatures by different methods (rows) and in
the two regions (columns).

Spain Central America

tasmax tasmin tasmax tasmin

RAW 1.8 1.8 3.5 4.0
QM 0.8 0.8 1.9 1.0
QDM 0.8 0.8 1.8 1.0
MLR 1.6 1.9 1.6 0.9
MLR-sfc 1.6 1.5 1.6 0.9
MLR-ANA 1.4 1.6 1.3 0.7
MLR-ANA-sfc 1.3 1.3 1.3 0.7
ANN 1.7 1.9 1.7 1.0
ANN-sfc 1.6 1.5 1.7 0.9
WG-PDF 4.8 3.6 2.1 1.3
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c. Evaluation of future trends

Finally, the impact that statistical downscaling can have on
long-term trends has been analyzed. Figure 9 shows trends
given by raw GCMs and by each SDM for maximum tempera-
ture under SSP5-8.5 in Spain. All SDMs preserve trends by
GCMs, and the use of surface temperature as a predictor for
TF methods does not appear to affect the trend (while it im-
proved results in the historical evaluation). On the other hand,
in Central America (Fig. 10), most methods modify trends sig-
nificantly. Among the MOS methods, the simple empirical
quantile mapping shows important deviations from the desired
trends, while for QDM, trends are preserved very accurately.
Transfer function methods, despite their good results in the his-
torical evaluation, present trends are extremely deviated from
the ones given by raw GCMs. The underestimation of the signal
of change displayed by the linear methods (MLR and MLR-
ANA, with and without sfc) can be explained by the low vari-
ability in the training dataset. Linear relationships are calibrated
in a sample with low variance and cannot be extrapolated to the
high values expected under the future climate. The same prob-
lem affects ANN (and ANN-sfc). These methods are calibrated
with a training dataset, and then, they are applied to predictors
with values out of the calibration range, and in that case, nonlin-
ear methods based on machine learning algorithms can behave
extremely wrong (Hernanz et al. 2022b). And finally, the WG-
PDF slightly deviates from the desired trend, probably because
of the same explanation. For minimum temperature, results are
similar (Figs. S3 and S4 in the online supplemental material).

For precipitation, Fig. 11 shows trends in Spain by each
SDM. MOS, XGB, and WG methods preserve trends quite
accurately (although with slight differences among them). On
the other hand, the analog method deviates significantly from
the desired trend, and the GLM-LIN is very sensitive to the
use of one or another humidity predictor. While its trend
without humidity and with relative humidity or dewpoint de-
pression is close to the one given by raw GCMs (although
with more spread, i.e., uncertainty), when the specific humid-
ity is included its behavior in the future is extremely wrong.
This can be explained by the fact that in a future warmer at-
mosphere, more water vapor can be stored without reaching
saturation, so the statistical relationship between specific hu-
midity and precipitation is expected to change. Additionally,
the specific humidity is a variable with a strong signal of
change, and its projected values often lie out of the observed
range, which, as has been mentioned, can be a problem for
statistical methods. The reason why XGB is less sensitive to
this specific humidity issue is that XGB uses precipitation as a
predictor, so it relies less on the other predictors. In Central
America (Fig. 12), more marked differences emerge among
the MOS methods, with QDM being the one that better pre-
serves trends. The analog method, as occurred in Spain, devi-
ates from the desired trend, in this case even changing the
sign of the future change. The GLM-LIN is again sensitive to
the use of one or another humidity predictor. In this case, if
no humidity index is included, the method does not project
any change, while raw GCMs project a decrease of the precip-
itation by the end of the century. When using the relative

FIG. 8. Relative bias (%) for the mean values (averaged over the whole testing period, 2006–20) of (left) the number of wet days,
(center) the mean precipitation in wet days, and (right) the total precipitation on very wet days in (top) Spain and (bottom) Central
America. Each box contains one value per point.
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humidity, the signal of change is intensified, and with the specific
humidity, a very nonrealistic behavior pointing to a large increase
in the precipitation is seen. Finally, with the use of Dtd, the trend
given by raw GCMs is better preserved. Thus, although the use
of any of the three proposed humidity predictors improved re-
sults in the historical evaluation, the use of one or another can se-
riously affect trends, which aligns with Fu et al. (2018). This issue
is less marked for XGB due to the important role of precipitation
as a predictor in this method, but while in Spain the use of spe-
cific humidity did not set XGB apart from raw GCMs, in Central
America it does. This is probably because of a more important
role of the specific humidity in the explanation of tropical precipi-
tation than in the extratropics. AndWG, as well as in Spain, pre-
serves trends given by raw GCMs perfectly.

5. Conclusions

Statistical downscaling has been extensively evaluated in
extratropical regions, but evaluation studies intercomparing
the main families of statistical downscaling methods are

nonexistent in the tropics. In this study, a comparison of
several state-of-the-art SDMs belonging to different families
has been performed over two completely different climatic
regions, Spain (midlatitudes) and Central America (tropical
region). The following conclusions about the behavior of
SDMs in both regions have been reached.

• Relevant predictors differ in both regions. Whereas in
Spain the role of large-scale pressure structures is key, in
Central America the humidity and instability appear to be
more important.

• Statistical downscaling improves results given by low-
resolution data.

• Statistical downscaling of temperature is more skillful in
Spain than in Central America.

• Transfer function methods for temperature do not extrapolate
well to future warmer conditions in Central America, probably
because of the low variance in the observed climate.

• The use of humidity as a predictor improves results in a his-
torical evaluation but can affect future trends. The sensitivity

FIG. 9. Change in maximum temperature (8C) by raw GCMs [RAW (gray)] and each SDM applied over them, under SSP5-8.5, com-
pared to the mean values in the reference period (1981–2010), spatially averaged in Spain and using annual means. The shaded area ex-
pands over the interquartile range around the median of the multimodel ensemble.
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for different methods and for each region is different, with
specific humidity (compared to the relative humidity and the
dewpoint depression) appearing to be the most problematic
variable. It can be argued that GCMs might be missing the
effects of an increase in specific humidity in precipitation due
to their coarse resolution and/or their generally poor repre-
sentation of convection. Convective rainfalls are important
both in Central America and in Spain (especially in the Med-
iterranean region). Thus, when comparing trends given by
raw GCMs with GLM-hus, it could be argued that maybe
GLM-hus is the one projecting the correct signal of change.
In our opinion, while it is theoretically possible that GCMs
are misrepresenting convective situations that lead to impor-
tant amounts of precipitation, and the GLM-hus might be
improving the signal of change by raw GCMs, we find it
difficult to trust that signal for various reasons. 1) The transfer-
ability of the statistical relationships between specific humidity
and precipitation is problematic due to the capability of a
warmer atmosphere to store more water vapor without reach-
ing saturation. 2) Statistical relationships can present problems
extrapolating outside their calibration range, especially for

nonlinear relationships. And specific humidity is frequently
projected outside of the observed range in the future. 3) Simi-
lar conclusions have been found using other statistical methods
(Fu et al. 2018). 4) The signal of change by GLM-hus is ex-
tremely different to the one given by raw GCMs, even of a dif-
ferent sign. On the other hand, it is true that GCMs might be
misrepresenting convection and missing part of the precipita-
tion. In this sense, trends given by raw GCMs might be wrong
to some degree. It is difficult to analyze this possibility, how-
ever, because the use of downscaling methods, even convec-
tion-permitting regional climate models, is limited. Since there
is no feedback from the downscaling methods to the GCMs,
when a precipitation event missed by a GCM is well captured
by a downscaling method; the amount of atmospheric humid-
ity that should be subtracted from the GCMs will still be pre-
sent and available to produce following precipitation events.
Thus, it is likely that the downscaled simulation will produce
an artifact overestimation of the precipitation amounts. In our
opinion, this limitation could only be solved by the use of
high-resolution convection-permitting GCMs. In the mean-
time, the dewpoint depression, an index implicitly accounting

FIG. 10. As in Fig. 9, but in Central America.
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for both the saturation and the amount of water vapor, ap-
pears to be a more reliable predictor.

• These conclusions have been reached for these specific
SDMs and setups but might vary for other SDMs, sets of

predictors, or regions. Regional variables of interest in the
tropics, such as, for example, the Galvez–Davison index,
have been neglected here for a fair and basic comparison
with the extratropics. Nonetheless, their use is expected to

FIG. 11. As in Fig. 9, but for precipitation and as relative change (%).

FIG. 12. As in Fig. 9, but for precipitation and as relative change (%) and in Central America.
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improve model performance, especially for the nonlinear
methods, in the tropics.

In summary, SD has been found to behave significantly dif-
ferently in Spain and Central America, although the benefits
of SD are clear in both regions. Some tropical regions are
especially vulnerable to climate change, so reliable regional
information is needed for adaptation and impact studies; fur-
ther analysis of the suitability of different SDMs and their
specific setups for those regions would be desirable. Further-
more, conclusions reached here might vary for other tropical
and extratropical regions, so the inclusion of different tropical
regions in comprehensive studies such as the one performed
in the EU COST Action VALUE targeting a wide variety of
extratropical locations might be needed.
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