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Abstract
As near-surface wind speed plays a role in regulating surface evaporation and thus the hydrological cycle, it is crucial to 
explore its spatio-temporal characteristics. However, in-situ measurements are scarce over the Tibetan Plateau, limiting the 
understanding of wind speed climate across this high-elevation region. This study explores the climatology of near-surface 
wind speed over the Tibetan Plateau by using for the first time homogenized observations together with reanalysis products 
and regional climate model simulations. Measuring stations across the center and the west of the plateau are at higher eleva-
tions and display higher mean and standard deviation, confirming that wind speed increases with increasing altitude. By 
exploring wind characteristics with a focus on seasonal cycle through cluster analysis, three regions of distinct wind regimes 
can be identified: (1) the central Tibetan Plateau, characterized by high elevation; (2) the eastern and the peripheral areas of 
the plateau; and (3) the Qaidam basin, a topographic depression strongly influenced by the blocking effect of the surround-
ing mountainous terrain. Notably, the ERA5 reanalysis, with its improvements in horizontal, vertical, and temporal spacing, 
model physics and data assimilation, demonstrates closer agreement to the measured wind conditions than its predecessor 
ERA-Interim. It successfully reproduces the three identified wind regimes. However, the newest ERA5-Land product does 
not show improvements compared to ERA5, most likely because they share most of the parametrizations. Furthermore, the 
two dynamical downscalings of ERA5 analyzed here fail to capture the observed wind statistics and exhibit notable biases 
and discrepancies also when investigating the diurnal variations. Consequently, these high-resolution downscaling products 
do not show add value in reproducing the observed climatology of wind speed compared to ERA5 over the Tibetan Plateau.
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1  Introduction

The Tibetan Plateau (TP), often referred to as the “Third 
Pole”, is the highest and most extensive upland region in 
the world, stretching for about 1,000 km along latitude and 
2,500 km along longitude, with an average elevation over 
4,000 m a.s.l. (above sea level) (Yao et al. 2012). It exerts 
profound thermal and orographic effects on atmospheric 
circulation patterns on all temporal and spatial scales 
(Gao et al. 1981), thus playing a crucial role in influenc-
ing regional and global climate through both thermal and 
dynamical mechanisms (Yang et al. 2004). The TP is also 
referred to as the “water tower of Asia” because it is the 
source region of several major rivers in Asia (e.g., Yellow 
River, Yangtze River, and Mekong River), hence providing 
water resources to 1.5 billion of people in east and south 
Asia (Yao et al. 2012). As near-surface (i.e., 10 m above 
ground level) wind speed (hereafter, NSWS) can alter the 
surface evapotranspiration rate (e.g., by increasing the 
movement of air around a plant, with more saturated air 
close to the leaf replaced by drier air), thus driving the 
exchange of heat and water vapor between the surface 
and the atmospheric boundary layer, it partly regulates 
the hydrological status and controls the local water cycle 
(Kang et al. 2010; Yang et al. 2014; Zheng et al. 2009). In 
addition, with more than 60% of the TP being arid or semi-
arid, NSWS is one of the key factors in shaping landforms 
and the geographical environment (Dong et al. 2017). For 
these reasons, it is crucial to understand the characteris-
tics of climatology and variability of NSWS over the TP 
because of its prominent environmental implications and 
impacts on the water resources of 10 countries, most of 
them being the most densely populated countries in the 
world (IPCC 2019).

However, the lack of sufficient observational data limits 
the understanding of NSWS over the TP. In fact, compared 
with other terrestrial regions of the world, observations are 
scarce here because meteorological stations are sparely 
distributed across the plateau due to its vast geographi-
cal area with complex topography, steep terrain, high 
elevations, and harsh environmental conditions (Ma et al. 
2020). In addition, not only the density of in-situ stations 
is sparse, but most available stations are located in valleys 
(Li et al. 2018). Therefore, the sparse and biased distri-
bution of measuring stations makes it difficult to match 
the high degree of landscape heterogeneity, and thus the 
comprehensive understanding of wind conditions across 
the whole TP. To overcome this challenge, more spatially-
complete datasets (i.e., where data are provided on a regu-
lar longitude-latitude grid, thus able to homogeneously 
cover a given region), such as reanalysis products, could 
be used to explore NSWS characteristics of this region. In 

fact, by using a forecast model in which information from 
global observations are assimilated, reanalyses produce 
spatially-homogeneous data that goes several decades back 
in time, providing an accurate (i.e., spatially complete and 
physically coherent) description of the climate of the past 
(Dee et al. 2011). Among the most popular and used rea-
nalysis products, we can find the ones produced over the 
past decades by the European Centre for Medium-Range 
Weather Forecasts (ECMWF), as ERA-Interim or ERA5 
(see Sect. 2.2). Historical reanalyses can be used together 
with regional climate models to downscale information 
from the reanalyses and simulate more small-scale fea-
tures of wind. In fact, for a region with complex terrain 
like the TP, topography produces strong modifications of 
the synoptic-scale circulation, causing high spatial vari-
ability in the near-surface flow (Whiteman 2000). Such 
stress of the meso- to micro-scale orographic variance 
is referred to as topographic drag, and its impact on the 
land–atmosphere momentum interaction is more promi-
nent in mountain regions than over flat areas. Thus, mod-
els at high horizontal resolution may be needed to better 
represent the heterogeneity in land surface and orography, 
and to resolve mesoscale processes that affect wind (Jimé-
nez et al. 2010; Li et al. 2017). Therefore, limited-domain 
climate model simulations with regional refinements are 
created by dynamically downscaling a coarser global rea-
nalysis (AMS 2013). In particular, by downscaling the 
reanalysis, large-scale flow is included in the regional 
simulations, while regional and small-scale circulation 
features are generated by the regional climate model. In 
addition, such regional modeling with a finer resolution 
can improve the simulation by including topographic drags 
by appropriate parametrization of the subgrid orographic 
variance and effects (i.e., subgrid orographic drag para-
metrization for turbulence-scale orographic form drag; 
Zhou et al. 2018). In this way, dynamical downscaling 
products can capture more climatic information at differ-
ent scales and at a higher resolution, being able to reduce 
local biases of reanalysis datasets, even in regions with 
complex topography where subgrid scale orographic vari-
ation exerts relevant turbulent form drag on atmospheric 
flows (Giorgi and Shields 1999; Jiménez and Dudhia 2012; 
Gao et al. 2015; Li et al. 2017; Ou et al. 2020). However, 
the improvements of dynamical downscaling over complex 
terrains need to be verified as insufficient representation of 
subgrid orography can lead to systematic biases in numeri-
cal simulations, as well as different formulations of drag 
induced by the unresolved subgrid orographic variance can 
cause large differences in simulated stresses over moun-
tainous regions (Zhou et al. 2017). Therefore, before any 
reanalysis or climate model dataset can be used to study 
wind speed conditions in a given area, especially if charac-
terized by complex topography, its ability in representing 
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observed NSWS statistics must be proven. In fact, previous 
studies have shown that their capability in simulating wind 
speed is strongly dependent on the selected region and the 
considered time period (Ramon et al. 2019; Wohland et al. 
2019; Miao et al. 2020). For this reason, it is necessary to 
explore the reliability of modeled outputs by comparing 
them with observations, so that the skills of the models 
in simulating wind climate can be verified (Kunz et al. 
2010). For example, several studies have shown improve-
ments in modeling the total precipitation as well as the 
diurnal cycle of precipitation when going to finer scales 
over the TP (e.g., Lin et al. 2018; Li et al. 2021a, b). But 
when it comes to surface winds, these benefits have been 
less studied and systematically explored for different high-
resolution regional model datasets.

So far, the literature has largely focused on investigating 
NSWS changes over the TP (e.g., You et al. 2014; Duan and 
Xiao 2015), but only a few studies have explored the sub-
regional differences in NSWS climatology and how these are 
simulated by reanalyses or dynamical downscaling products 
(Li et al. 2017; Li et al. 2021a, b; Yao et al. 2018; Zao et al. 
2019). Despite the uneven distribution of the meteorological 
stations over the TP, available observations can be used to 
investigate how wind conditions are simulated by reanalyses 
and climate models. Only when their reliability is verified, 
those simulated outputs can be employed to comprehen-
sively investigate the NSWS climate, trends, and variability 
over the whole heterogeneous landscape of the TP.

For all these reasons, this study aims to: (a) improve the 
understanding of the spatio-temporal climatology of homog-
enized (i.e., variations caused by non-climatic factors have 
been removed – see Sect. 2.1) observed NSWS over the TP 
by identifying the most relevant geographical features for the 
NSWS climatology; (b) evaluate the performance of recent 
reanalyses in simulating NSWS observations; and (c) assess 
if dynamic downscaling of current reanalyses adds value in 
reproducing the observed NSWS climatology. In this study, 
we focus on the few recent ECMWF reanalyses (i.e., ERA-
Interim, ERA5, and ERA5-Land – see Sect. 2.2) to evalu-
ate if and how their improvements during the last decades 
have affected their performance in modeling NSWS over 
the TP. Similarly, we only look at two different downscaling 
products of ERA5 to identify the potential added value of 
downscaling compared to the downscaled reanalysis when 
it comes to wind simulations. In addition, it is important to 
highlight that this is the first study which analyses NSWS 
climatology over the TP using homogenized observed series, 
i.e. series where their changes are only caused by variations 
in climate and the effect of possible non-climatic factors are 
removed and corrected (see Sect. 2.1).

The paper is structured as follows: the data used by the 
study (e.g., wind observations and modeled outputs) is pre-
sented in Sect. 2. Section 3 describes the methods applied 

here to investigate wind climatology and it is presented how 
the comparison between wind measurements and modeled 
data is made. Section 4 shows and discusses the results of 
the analyses: in particular, after exploring the climatology 
of observed NSWS (Sect. 4.1), it is evaluated the perfor-
mance of reanalysis (Sect. 4.2) and dynamical downscaling 
(Sect. 4.3) products in reproducing observed wind charac-
teristics. Conclusions are drawn in Sect. 5.

2 � Data

2.1 � NSWS observations

Daily means of NSWS observations from 104 stations over 
the TP for 1960–2020 are provided by the China Meteoro-
logical Administration (CMA). Those weather stations do 
not cover evenly the whole TP, but are mostly located in 
the east, with only a few stations in the west and center of 
the plateau (Fig. 1). Multi-decadal NSWS series can be 
unrepresentative of the actual climate and its variations over 
time when the presence of various types of non-climatic 
factors, as station relocations and anemometer height and 
type changes can create artificial shifts (or break-points) in 
the observed series (Aguilar et al. 2003; Wan et al. 2010). 
Therefore, it is necessary to apply a homogenization proto-
col which is able to detect those artificial shifts and after-
wards correct the biases which those inhomogeneities create. 
In this study, Climatol (Guijarro 2018) is applied to identify 
break-points, remove their biases, reject outliers, and infill 
missing data. Climatol is a R (R Core Team 2020) pack-
age for quality controlling, homogenizing, and missing data 
infilling of climate series. More info about this software 
can be retrieved at http://​www.​clima​tol.​eu/ (last accessed 
7 August 2023). Climatol has been widely used for homog-
enizing NSWS series in various studies (e.g., Azorin-Molina 
et  al. 2019; Shi et  al. 2019; Zhang et  al. 2020; Minola 
et al. 2021a, b), proving to be a reliable tool for success-
fully homogenizing wind series. Here, homogenization is 
performed on monthly aggregates, using only nearest data 
available at each time step as reference for identifying break-
points, rejecting outliers, and infilling of missing data. A 
homogenized dataset of 104 monthly mean NSWS series 
over the TP for 1960–2020 is thus created by the applied 
homogenization protocol.

To analyze the diurnal cycle of NSWS over the TP, sub-
daily observations are retrieved from the Met Office Hadley 
Centre Integrated Surface Database (HadISD) (Smith et al. 
2011; Dunn et al. 2012, 2014, 2016; Dunn 2019). In particu-
lar, this study uses the HadISD version 3.1.1 (https://​www.​
metof​fi ce.​gov.​uk/​hadobs/​hadisd/; last accessed 7 August 
2023). The HadISD archive contains synoptic reports (sub-
daily, station-based, and quality-controlled) from a large 

http://www.climatol.eu/
https://www.metoffice.gov.uk/hadobs/hadisd/
https://www.metoffice.gov.uk/hadobs/hadisd/
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number of global measuring stations. Here, 3-hourly (i.e., 
at UTC 00:00, 03:00, 06:00, 09:00, etc.) measurements of 
mean NSWS are collected from 27 stations over the TP for 
2017–2018 (Fig. 1). Those 27 stations are also included in 
the CMA 1960–2020 dataset previously presented. As it is 
not possible to apply a reliable homogenization protocol 
for 3-hourly series, we only focus on the recent 2017–2018 
because missing and flagged (i.e., records removed by qual-
ity control flags) observed values are minimal during this 
time period.

2.2 � Reanalyses

This study compares observed NSWS with wind outputs of 
three reanalysis datasets from ECMWF: (a) ERA-Interim 
(hereafter, ERAINT), (b) ERA5, and (c) ERA5-Land. 
ERA5 is the fifth generation ECMWF reanalysis, which has 
replaced its predecessor ERAINT (Hersbach et al. 2018). 
Compared to ERAINT, ERA5 benefits from 10 years of 
improvements in model physics and data assimilation, as 
well as in the increased number of ingested observations, 
with newly available observed datasets now assimilated. It 
is noteworthy to remark that in all ECMWF products near-
surface wind measurements over land are excluded from the 
data assimilation process (Dee et al. 2011). ERA5 outputs 
are produced hourly at a horizontal resolution of 31 km, 
whereas ERAINT climate variables are available 3-hourly 

at a 79 km horizontal grid-spacing (Fig. S1). ERA5-Land 
has been produced by replaying the land component of the 
ERA5 climate reanalysis through global high-resolution 
numerical integrations (Muñoz-Sabater et al. 2021). Even 
though ERA5-Land shares most of the parametrizations with 
ERA5, its main advantage compared to ERA5 is the hori-
zontal resolution (Fig. S1), which is enhanced globally to 
9 km (while the temporal resolution is hourly as in ERA5).

3-hourly (for ERAINT) and hourly (for ERA5 and ERA5-
Land) 10-m height zonal (u) and meridional (v) wind com-
ponents are downloaded for 1981–2018, which is the com-
mon time period for both observations and the three selected 
reanalyses. In particular, ERAINT wind data is downloaded 
from https://​apps.​ecmwf.​int/​datas​ets/​data/​inter​im-​full-​daily/​
levty​pe=​sfc/ (last accessed 7 August 2023); ERA5 and 
ERA5-Land wind outputs are accessed from the Copernicus 
website (https://​cds.​clima​te.​coper​nicus.​eu/​cdsapp#​!/​datas​
et/​reana​lysis-​era5-​single-​levels?​tab=​overv​iew and https://​
cds.​clima​te.​coper​nicus.​eu/​cdsapp#​!/​datas​et/​reana​lysis-​era5-​
land?​tab=​form, respectively; last accessed 7 August 2023). 
At each grid point, NSWS is calculated as the square root of 
the sum of the squared wind components at the land-surface 
single level at a given time:

(1)NSWS =
√

(u2 + v
2)

Fig. 1   Elevation map of the 
study area with the location of 
the measuring stations selected 
from the CMA dataset (104 
stations; blue circles) and the 
CMA’s measuring stations with 
sub-daily observations available 
from the HadISD.3.1.1 dataset 
(27 stations; yellow stars)

https://apps.ecmwf.int/datasets/data/interim-full-daily/levtype=sfc/
https://apps.ecmwf.int/datasets/data/interim-full-daily/levtype=sfc/
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overview
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overview
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land?tab=form
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land?tab=form
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land?tab=form
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Once that hourly (and 3-hourly for ERAINT) NSWS 
series are computed using Eq. 1, monthly mean NSWS 
series are calculated. For evaluating the performance of the 
reanalyses in simulating observations, the observed NSWS 
series at a given measuring station is compared with the 
NSWS series from the closest reanalysis grid point, under 
the assumption that the closest grid series matches the 
observed one better than any other more distant grid point 
series (Minola et al. 2020).

2.3 � Dynamical downscaling products

This study evaluates the performance in simulating NSWS 
of two high-resolution downscaling products, which are 
created by downscaling ERA5 using the regional Weather 
Research and Forecasting (WRF) model (Skamarock et al. 
2008): (1) a WRF downscaling at a 9-km resolution (hereaf-
ter, WRF-9km), and (2) the High Asia Refined analysis ver-
sion 2 (hereafter, HAR). In the WRF-9km (Ou et al. 2020, 
2023; Sun et al. 2021), ERA5 has been dynamically down-
scaled at a 9 km resolution for East Asia with a focus on 
the TP region since 1979. More info about this product and 
data access at http://​biggeo.​gvc.​gu.​se/​TPRea​nalys​is/ (last 
accessed 7 August 2023). In a similar way, HAR (Maussion 
et al. 2011, 2014; Wang et al. 2020) is generated by dynami-
cal downscaling ERA5 using WRF. HAR outputs are at a 
10 km grid-spacing from 1980. A more detailed description 
of HAR and the outputs of the model can be retrieved at 
this link: https://​www.​klima.​tu-​berlin.​de/​index.​php?​show=​
daten_​har2&​lan=​de (last accessed 7 August 2023).

These two datasets have been chosen as, among the avail-
able high-resolution regional climate models covering the 
TP region, they are the only dynamical downscaling prod-
ucts of ERA5 which have climate simulations over the TP 
at a horizontal grid-spacing of ~ 10 km for a 30-years time 
period (no other datasets have simulations with such high 
spatial resolution for such long time-period; Kukulies et al. 
2023). Both datasets have largely been used to explore the 
climatology across this region (e.g., Curio et al. 2015; Ou 
et al. 2023). Even if they are both obtained by dynamical 
downscaling using the WRF model, with ERA5 data used 
as forcing data, the setup of the downscaling differs between 
the two products. Among the differences, e.g., WRF-9km 
uses the Yonsei University (YSU) Planetary Boundary Layer 
(PBL) scheme (Hong et al. 2006), while HAR parametrizes 
the PBL with the Mellor-Yamada-Janijic scheme (Janjić 
1994). For the cumulus parameterization, HAR adopts the 
Grell 3D scheme (Grell 1993; Grell and Dévényi 2002); 
WRF-9km turned off the convective parameterization. To 
prevent the model from deviating too far from the forcing 
data (i.e., to constrain large-scale driving field and thus 
reduce the impact of model domain size on the regional 

simulation), HAR uses daily re-initialization: each run 
started at 12:00 UTC and contained 36 h, with the first 12 h 
as the spin-up time. Instead, WRF-9km uses as a forcing 
strategy spectral nudging, which consists of adding a new 
term to the tendencies of the model variables that relaxes 
the selected part of the spectrum to the corresponding waves 
from driving fields (in this case, ERA5).

In the same way as hourly NSWS has been calculated 
for ERA5 and ERA5-Land, hourly NSWS series are created 
using Eq. 1 from u and v outputs of WRF-9km and HAR. 
Monthly mean NSWS series are then created and the closest 
grid point series is compared to the observed one of a given 
series. For comparison between observed, WRF-9km and 
HAR NSWS series, we use 1991–2018 which is the common 
time period between those datasets (in fact, while HAR out-
puts are continuously updated to be extended back to 1979, 
outputs were available only for the period after 1991 when 
this study was carried out).

2.4 � Global digital elevation model

To explore the influence of topography on NSWS statistics, 
we obtain land surface elevation data from the global digital 
elevation model by the Earth Resources Observation and 
Science (EROS) Center: the Global 30 Arc-Second Eleva-
tion (GTOPO30) dataset (Gesch et al. 1999). GTOPO30 
combines several raster and vector sources of topographic 
information to derive elevation values on a regularly-spaced 
grid of 30 arc seconds (approximately 1 km). GTOPO30 
data is available for downloading at https://​www.​usgs.​gov/​
cente​rs/​eros/​scien​ce/​usgs-​eros-​archi​ve-​digit​al-​eleva​tion-​
global-​30-​arc-​second-​eleva​tion-​gtopo​30#​overv​iew (last 
accessed 7 August 2023).

3 � Methods

3.1 � Statistical measures for comparison

To quantify the agreement between observed and modeled 
NSWS, we use the following statistical methods: (1) Pear-
son’s correlation coefficient, which measures the degree of 
association (i.e., linear relationship; Gibbons and Chakrborti 
2003) and it is reported at the significant level of p < 0.05; 
(2) Root Mean Squared Error (hereafter, RMSE), which 
mathematically expresses the vicinity between two datasets 
(i.e., how far predictions fall from measured true values; 
Von Storch and Zwiers 1999); (3) bias, which identifies the 
tendency to constant deviate of a realization compared to 
another; and (4) coefficient of determination (hereafter, R2), 
which represents the proportion of the variance for a depend-
ent variable that is explained by an independent variable in 
a regression model.

http://biggeo.gvc.gu.se/TPReanalysis/
https://www.klima.tu-berlin.de/index.php?show=daten_har2&lan=de
https://www.klima.tu-berlin.de/index.php?show=daten_har2&lan=de
https://www.usgs.gov/centers/eros/science/usgs-eros-archive-digital-elevation-global-30-arc-second-elevation-gtopo30#overview
https://www.usgs.gov/centers/eros/science/usgs-eros-archive-digital-elevation-global-30-arc-second-elevation-gtopo30#overview
https://www.usgs.gov/centers/eros/science/usgs-eros-archive-digital-elevation-global-30-arc-second-elevation-gtopo30#overview
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3.2 � Classification of the seasonal and diurnal cycle 
of NSWS

This study uses the k-means clustering method (Wilks 1995) 
to identify regional regimes in NSWS seasonality and diur-
nal variability over the plateau. By applying the k-mean clus-
tering, the mean seasonal (diurnal) cycles of NSWS of the 
different stations/grid points are portioned into a given num-
ber of clusters based on the feature similarity of their sea-
sonal (diurnal) regimes. The k-means clustering is applied to 
the seasonal and diurnal cycle anomalies of NSWS (i.e., nor-
malized seasonal and diurnal cycles, where the annual and 
daily mean is removed from each monthly and hourly mean 
value, respectively). In this way, the classification focuses 
on the differences in shape rather than differences in overall 
magnitude. The number of partitions in the cluster analysis 
has been chosen to reach a good balance between coher-
ent patterns and sufficient distinction between classes. The 
k-means clustering method, for example, has been used for 
the analysis of precipitation seasonality over the TP (Curio 
and Scherer 2016).

3.3 � Time‑scale for calculation of reanalyzed NSWS

As explained in Sect. 2.2, the reanalyzed NSWS is calculated 
from Eq. 1 using the hourly (and 3-hourly for ERAINT) u 
and v wind components outputted by the reanalysis. The 
monthly mean series of NSWS are then calculated based 
on those hourly NSWS series (hereafter, NSWS hourly-
calculated). This process demands a lot of computational 
resources, as it requires that data are downloaded at high 

temporal resolution (i.e., hourly) for multiple years in a 
large spatial domain, as the one of the TP. It also requires 
a lot of computation power in order to perform the neces-
sary calculation of monthly averages. A less computational-
costly alternative is to download already-calculated monthly 
means of u and v from the ECMWF archive (where they are 
available), and then to calculate NSWS using Eq. 1 but with 
monthly-averaged zonal and meridional wind components 
(hereafter, NSWS monthly-calculated). Mathematically, 
differences must emerge when using Eq. 1 with hourly- or 
monthly-averaged NSWS. But the question is: how differ-
ent are aggregated statistics between the NSWS hourly-
calculated and the NSWS monthly-calculated? In addition, 
where are these differences most significant? Fig. 2 shows 
the spatial differences in the 1981–2020 means between the 
monthly-calculated NSWS and hourly-calculated NSWS. 
When calculating NSWS at the two different temporal reso-
lutions, NSWS hourly-calculated is always greater than the 
monthly-calculated NSWS. Differences across the TP can 
reach 0.4 m s−1 in the higher-elevation regions, with an aver-
age difference of 0.2 m s−1 for the whole plateau in all three 
reanalyses. Differences may be related to the importance 
given at specific spatial- and time-scales in the two NSWS 
calculations. In the NSWS monthly-calculated, daily or sub-
daily processes are not so relevant, as it only considers the 
aggregated statistics of the u and v wind components. This 
method may be more suitable for global studies, where large-
scale atmospheric circulations are more relevant than local 
and short-time scale processes (Landberg 2016). When com-
puting NSWS based on hourly u and v components, daily 
and/or sub-daily processes can be considered. Therefore, it is 
relevant to use hourly-calculated NSWS only for studies on 

Fig. 2   Spatial differences 
between the annual means of 
monthly-calculated and hourly-
calculated NSWS in ERAINT 
(a), ERA5 (b), and ERA5-Land 
(c) for 1981–2020
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shorter-time or local scales. The TP is a region of extremely 
complex topography where local and short-time scale pro-
cesses play a key role (Liu et al. 2009; Yang et al. 2004). 
Wind conditions are strongly affected by surface forcing as 

large-scale wind circulation is broken by localized circula-
tions driven by valleys and mountains (Helbig et al. 2017; 
Rotach et al. 2015; Serafin et al. 2018). For this reason, we 
decide to use NSWS hourly-calculated in this study.

Fig. 3   Spatial distribution of the annual and seasonal means and the standard deviations of the observed NSWS for the 104 homogenized sta-
tions over the TP for 1960–2020
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4 � Results and discussion

4.1 � Climatology of observed NSWS

Figure 3 shows the annual and seasonal spatial distribu-
tion of mean and standard deviation of observed NSWS for 
1960–2020 over the TP. Annually, the few stations on the 
west and center of the plateau display greater mean NSWS 
(between ~ 3.5 and ~ 4.5 m s−1) compared to the stations in 
the east and southeast (~ 2.0 m s−1). The spatial pattern of 
the standard deviation of observed NSWS for 1960–2020 
resembles the spatial pattern of the mean, with higher val-
ues (greater than ~ 1.0 m s−1) for stations in the west and 
center of the plateau compared to stations in the east (Yao 
et al. 2018). Following this spatial distribution, it appears 
that stations with higher mean NSWS display also higher 
standard deviation, as shown by the scatter plot of mean 
versus standard deviation in Fig. S2 in the supplementary 
material. Seasonally, the spatial distribution with lower val-
ues of mean and standard deviation in the west does not 
change. Overall, there are greater values recorded for all the 
measuring stations during spring compared to winter, sum-
mer and autumn, and stations with greater mean are also the 
ones with greater standard deviation.

To identify the geographical features behind the detected 
spatial pattern, the mean NSWS of each station is plotted 
against the station elevation (Fig. 4a). It is evident that sta-
tions at higher elevations are the ones with greater mean 
NSWS. By grouping stations into classes with increasing 
averaged elevation, stations display greater mean and stand-
ard deviation of NSWS (e.g., red star vs. light-blue star; 
Fig. 4b). As stations in the west and center of the plateau 
are the ones located at higher elevation (Fig. 4c), the spa-
tial pattern of Fig. 3 with stations on the west and center 

of the plateau of greater NSWS mean and standard devia-
tion is explained. Therefore, elevation differences driven by 
the topography are responsible for the spatial distribution 
of mean and standard deviation of observed NSWS, with 
station mean and standard deviation increasing for increas-
ing elevation. Note that mean NSWS decreases from sta-
tions in the west to stations in the east when plotting the 
mean of NSWS of each station against the station longitude 
(Fig. S3 in the supplementary material). However, this zonal 
dependency of mean NSWS results from having just a few 
stations at high elevation in the west of the plateau. In fact, 
when using the GTOPO30 data to calculate the elevation 
meridional-mean and to see how elevation changes accord-
ing to the longitude over the TP (Fig. 4c), it is shown that the 
plateau has greater altitude in the west compared to the east: 
the apparent zonal dependency is driven by the elevation 
dependency. The elevation dependency of NSWS (i.e., ter-
rain enhances wind speed and high-elevation regions more 
influenced by strong large-scale synoptic flows) is not some-
thing new, and various studies (McVicar et al. 2007; Miller 
and Davenport 1998; Wood 2000) have already shown that 
wind speed increases exponentially with increasing altitude, 
especially over the TP (Yao et al. 2018).

To further explore the climatology of NSWS over the TP, 
the seasonal cycle for 1960–2020 is analyzed. As shown 
by Fig. S4 in the supplementary material, greater NSWS 
is recorded during spring compared to the rest of the sea-
sons, in line with what has been shown by Li et al. (2017), 
Li et al. (2021a, b), and Zhao et al. (2019). The wind is 
stronger during spring because it is the time of the year 
when extra-tropical cyclones are active (Li et al. 2021a, b). 
By using k-means clustering, differences in the seasonal 
cycle anomalies among the observed NSWS series are 
explored. We identify three classes of stations with different 

Fig. 4   Elevation dependency of NSWS: (a) Scatter plot of the 1960–
2020 mean of NSWS for the 104 stations over the TP plotted against 
the station elevation. (b) Scatter plot of the 1960–2020 mean of 
NSWS for the 104 stations over the TP (circles) and for the 4 means 
of the elevation-classes (stars) plotted against the respective 1960–

2020 standard deviation. (c) Scatterplot of the elevation of the 104 
stations over the TP plotted against the station longitude. The blue 
line is the elevation meridional-mean over the TP calculated using the 
GTOPO30 dataset
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seasonality (Fig. 5). Note that we chose three partitions in 
the cluster analysis because with this number it is reached a 
good balance between coherent patterns and sufficient dis-
tinction between classes. One class (hereafter, Cluster 1, 
which includes most of the stations – 65 stations; Fig. 5a) 
displays a NSWS maximum during spring (i.e., March 
and April). Another class (Cluster 2; Fig. 5b) includes 18 
NSWS series that have a maximum in February-March-April 
and a minimum in July-August-September. The third class 
(Cluster 3; Fig. 5c) includes 21 stations with greater NSWS 
during spring and early-summer (i.e., from March to July) 
compared to the rest of the year. Looking at the magnitude 
differences in the NSWS seasonal cycle between the three 
classes (i.e., when plotting the mean NSWS annual cycle 
for each cluster identified using the seasonal cycle NSWS 
anomalies; Fig. 5d), the mean Cluster 2 seasonal cycle is 
overall greater (~ 2.0–3.8 m s−1) than the one for Cluster 

1 (~ 1.8–2.5 m s−1). Similar to the highest NSWS values 
recorded in Cluster 2, Cluster 3 stations reach on aver-
age ~ 1.8–2.5 m s−1 during late spring. Figure 5e shows the 
spatial distribution of the seasonal cycle clusters. Stations 
belonging to Cluster 1 are mostly located in the east of the 
TP, while stations from Cluster 2 are found in the center 
of the plateau, with only a few stations in the east (mostly 
southeast). Cluster 3 stations are located all along the west-
ern and southern border of the TP, in the north, and a few are 
also found in the east. Unfortunately, the sparse and biased 
distribution of measuring stations over the TP is a challenge 
for the comprehensive understanding of the spatial pattern of 
NSWS clusters across the plateau. For example, does Cluster 
2 include all stations at the higher elevations of the center of 
the plateau? For answering to such types of questions, it is 
necessary to analyze a more spatially complete dataset, such 
as the reanalysis outputs (see Sect. 4.2).

Fig. 5   Seasonal cycle clusters: (a-c) Clustering of the mean seasonal 
cycle of NSWS anomalies for the 104 stations over the TP for 1960–
2020. Grey lines represent the seasonal cycles of each station series 
in the given cluster, while the seasonal cycle cluster-mean (i.e., aver-
age over all the stations in the given cluster) is plotted as the black 

line. (d) Cluster-averaged (i.e., averaged over all the stations in the 
cluster) seasonal cycles of NSWS over the TP for 1960–2020. (e) 
Spatial distribution of the seasonal cycle clusters of the 104 stations 
over the TP. Stations in Cluster 1 are shown as red dots, stations in 
Cluster 2 as blue dots, and stations in Cluster 3 as green dots
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4.2 � Comparison between observations 
and reanalyses

To investigate the performance of the selected ECMWF 
reanalyses in simulating NSWS, the spatial distribution of 
mean NSWS for 1981–2018 is plotted in Fig. 6 for observa-
tions, ERAINT, ERA5, and ERA5-Land. Despite the dif-
ferences in the horizontal resolution, all three datasets are 
able to capture the higher NSWS in the center of the plateau. 
But, thanks to the higher resolution, better model physics, 
more data assimilated, and its more advanced assimila-
tion method, ERA5 and ERA5-Land show improvements 
in simulating mean NSWS due to more-local topographic 
features, which ERAINT cannot reproduce. For example, 
especially in the southeast of the TP, the latest reanalyses 

can differentiate between NSWS conditions in valleys 
(lower values) and along ridges (higher values). In general, 
ERAINT tends to overestimate mean NSWS over the TP 
(Fig. 7). Even if both ERA5 and ERA5-Land slightly under-
estimate the NSWS conditions, they better match the spatial 
differences in mean NSWS over the plateau compared to 
ERAINT. Statistics shown in Fig. 8 enable a more detailed 
comparison between the performance of the three reanalysis 
datasets in simulating NSWS during 1981–2018. Mean Pear-
son’s correlation does not differ notably among the reanaly-
ses (between 0.4 and 0.5), even when the seasonal cycle is 
removed from the monthly NSWS series (mean correlation 
drops almost equally by ~ 0.12 for all three datasets). Mean 
RMSE is greater for ERAINT and ERA5-Land (0.96 and 
0.89 m s−1, respectively) compared to ERA5 (0.8 m s−1). 

Fig. 6   Spatial distribution of the annual-mean NSWS calculated for 1981–2018 using observations (colored dots) and ERAINT (a), ERA5 (b), 
and ERA5-Land (c)

Fig. 7   Scatter plot of the 1981–2018 annual-mean of the observed NSWS of the 104 stations over the TP plotted against the respective NSWS 
mean of the ERAINT closest grid points (a), of the ERA5 closest grid points (b), and of the ERA5-Land closest grid points (c)
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The large biases in ERAINT and ERA5-Land, which is 
positive for the former (0.5 m s−1) and negative for the lat-
ter dataset (0.6 m s−1), account substantially to such large 
RMSEs. As already seen from Fig. 7, similar to ERA5-Land, 
ERA5 tends to underestimate NSWS, with a mean bias of 
0.3 m s−1. Overall, the performance of the three reanalyses 
in simulating monthly NSWS series for 1981–2018 does 
not differ significantly in terms of mean correlation, mean 
RMSE, and mean bias. Only ERA5 displays a smaller mean 
RMSE and bias compared to both ERAINT and ERA5-
Land, even if it is also negatively biased.  

The improvements in NSWS simulation of ERA5 and 
ERA5-Land can be detected when looking at the mean 
seasonal cycle. Consistent with the results of Fig. 7, mean 
NSWS seasonal cycle of ERA5 and ERA5-Land is nega-
tively biased but captures the higher NSWS conditions 
observed during March and April (Fig. S4 in the supplemen-
tary material). In addition, when applying the k-mean clus-
tering to modeled NSWS anomaly series, only the seasonal 
cycles of ERA5 and ERA5-Land grid-series can be clustered 
in three classes (Fig. 9). Within the ERAINT data, just two 
classes with different seasonality can be identified. Figure 10 

Fig. 8   Averaged (i.e., averaged over all the stations/closest grid 
points) statistics of comparison (i.e., (a) Pearson’s correlation, (b) 
Pearson’s correlation without seasonal cycle, (c) RMSE, and (d) 
bias (modeled minus observed) between monthly-averaged observed 
NSWS series and monthly-averaged reanalyzed NSWS series from 
ERAINT, ERA5, and ERA5-Land for 1981–2018. For the Pearson’s 

correlation, it is also reported the percentage of the closest grid points 
showing significant correlation at significant level p < 0.05. The error 
bar (± 1 standard deviation around the mean value) shows the stand-
ard deviation of the statistic metric calculated for all the stations/clos-
est grid points
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compares the cluster-averaged (i.e., averaged over all the 
stations/closest grid points in the cluster) seasonal cycles of 
NSWS calculated using observations with the ones calcu-
lated using ERAINT, ERA5, and ERA5-Land. Here we can 
see that ERAINT captures the annual variations in the two 
classes that it simulates, even if it overestimates the annual 
mean of NSWS. In contrast, both ERA5 and ERAINT are 
negatively biased when simulating the NSWS seasonal cycle 
of Cluster 1 and partly lack in capturing the greater wind 
magnitudes during March-April. But, in Cluster 2 and Clus-
ter 3, the two latest ECMWF reanalyses, even if positively 

biased (bias smaller than the one shown by ERAINT), prop-
erly follow the observed annual variations of NSWS. 

The spatially-complete reanalyses can now be used to 
explore how the different classes are distributed over the TP 
(Fig. 11), something we could not do using the observational 
dataset of sparse and biased-distributed in-situ measuring 
stations (see Sect. 4.1). Cluster 1 (red areas) in all three 
datasets surrounds the plateau and it largely occupies the 
eastern side of the plateau. Instead, Cluster 2 (blue areas) 
is dominant in the center-west of the TP and over a few 
limited areas in the east. Cluster 3, which appears in ERA5 

Fig. 9   Clustering of the 1981–2018 mean seasonal cycle of NSWS 
anomalies for the 104 closest-grid series of ERAINT (a), ERA5 (b), 
and ERA5-Land (c). Light-colored lines represent the seasonal cycles 

of each closest grid  point series in the given cluster, while the sea-
sonal cycle cluster-mean (i.e., average over all the closest grid point 
series in the given cluster) is plotted with the dark-colored thicker line

Fig. 10   Comparison of cluster-averaged (i.e., averaged over all the stations/closest grid points in the cluster) series of the 1981–2018 mean sea-
sonal cycles of NSWS calculated using observations (black line), ERAINT (red lines), ERA5 (blue line), and ERA5-Land (green line)
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and ERA5-Land, occupies a large area in the northeastern 
plateau, which corresponds to the Qaidam basin, the larg-
est topographic depression inside the TP (Yin et al. 2008). 
Figure 12 plots the 1981–2018 mean NSWS of each grid 
point in a given dataset with its modeled elevation, with the 
scatter points colored according to the class they belong to. 
In all the reanalyses, grid points from Cluster 1 go from the 
highest to the lowest elevations, while grid points in Cluster 
2 are the ones with the higher elevations and the greatest 
mean NSWS. Cluster 3, which appears only in ERA5 and 
ERA5-Land, includes grid points in a shallow band with 
elevation between 2,800–3,500 m a.s.l. (i.e., the depres-
sion of the Qaidam basin) with mean NSWS between 2 and 

4.5 m s−1 (generally higher than the one of Cluster 1 and in 
the same range of Cluster 2). The clear differences in the 
seasonal cycle at the Qaidam basin can be associated with 
the blocking effect of the surrounding mountainous terrain 
(Zhao et al. 2019). In fact, as the Qaidam Basin is aligned 
north-west, it shows greater wind conditions during summer 
when the dominant southwesterly winds prevail strength-
ened by the blocking effect of the surrounding terrain. 

Not only measuring stations located in the Qaidam basin 
are classified in Cluster 3, but various other stations over 
the TP are grouped in Cluster 3 (Fig. 12). Similarly, a few 
grid points of ERA5 and ERA5-Land outside the Qaidam 
basin appear to belong to Cluster 3. The reason behind such 

Fig. 11   Spatial distribution of the NSWS seasonal-cycle clusters calculated for 1981–2018 using observations (a), ERAINT (b), ERA5 (c), and 
ERA5-Land (d)

Fig. 12   Scatter plot of the modeled elevation of the grid points over 
the TP plotted against their NSWS mean for 1981–2018 in ERAINT 
(a), ERA5  (b), and  ERA5-Land (c). Each scatter-point is colored 

according to the class it belongs to: Cluster 1 in red, Cluster 2 in 
blue, and Cluster 3 in green
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localized Cluster 3 stations and grid points could be related 
to the valley and mountain orientations: for example, the 
main wind direction coincides with the path of the westerly 
jet stream and the orientation of valleys and mountains (Yao 
et al. 2018). In ERA5 and ERA5-Land, where complex 
topography can only be modeled partly, Cluster 3 grid points 
outside the Qaidam basin are uncommon.

The reason why ERAINT only identifies two classes 
when clustering the seasonality, while the latest datasets can 
see three classes (i.e., the Qaidam basin’s wind conditions), 
may be related to the lower resolution, the worse mod-
eled physics, less data assimilated, and the less advanced 
assimilation method compared to ERA5 and ERA5-Land 
(Dee et al. 2011). For example, thanks to the higher resolu-
tion, the orography is better simulated in ERA5 and ERA5-
Land: the mean elevation difference between actual station 
elevations and modeled elevations of the closest grid point 
of ERAINT is −645.3 m, and it decreases for ERA5 and 
ERA5-Land (−599.7 m and −450.2 m, respectively). The 
more realistic topographic representation may help to bet-
ter identify the different NSWS conditions in the compara-
tively low-elevated area of the Qaidam basin. Of course, 
the higher spatial resolution cannot explain alone the bet-
ter performance of ERA5 and ERA5-Land compared to 
ERAINT: it is important to consider it all together with the 
improvements in model processes, core dynamics, and data 
assimilation. This is supported by the similar performance 
of ERA5-Land and ERA5 in simulating NSWS statistics. 
In fact, even if ERA5-Land has a finer horizontal spacing, 
it does not show any significant improvements compared 
to ERA5, as it can be considered as a re-run of ERA5. It 
results indeed from forcing the land surface component with 

low atmospheric meteorological fields from ERA5, with no 
additional atmospheric/oceanic coupling or data assimilation 
scheme (Gomis-Cebolla et al. 2023).

To summarize, ERA5 better simulates NSWS over the 
TP compared to ERAINT probably due to its consider-
able increase in horizontal and vertical resolution, as well 
as temporal resolution, and a decade of improvements in 
the representation of model processes and data assimilation 
(Hersbach et al. 2018). The simulated NSWS in ERA5-Land 
do not match better the observed one compared to ERA5, as 
ERA5-Land shares with ERA5 most of the parametrizations 
and does not benefit from any changes in the physics of the 
model or from the data assimilation (Muñoz-Sabater et al. 
2021). To notice that the elevation of the measuring stations 
is generally lower than the one of the nearest grid cells, espe-
cially in the mountainous southern TP (Li et al. 2017). This 
is because most of the stations across the plateau are located 
in valleys, where they are easier to access. Therefore, the 
station elevation may not be a representation of the closest 
grid-point, and such elevation mismatch could contribute to 
the differences between observed and simulated wind. This 
issue is related to the fundamental mismatch between the 
spatial representativeness of in-situ observations, which are 
necessary collected at precise locations, and that of gridded 
climate model outputs, which instead represent mean values 
over an area (Avila et al. 2015). Therefore, it is important 
to underline that discrepancies between observations and 
model outputs can also be partly attributed to the problem-
atic comparison of point observations to values on a latitude-
longitude grid, as observed NSWS is highly dependent on 
the precise location of the station within the terrain complex-
ity, while model output only represents the grid mean value.

Fig. 13   Spatial distribution of 
the 1991–2018 mean of NSWS 
calculated using ERA5 (a), 
WRF-9km (b), and HAR (c)
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4.3 � The added value of downscaling

To evaluate if the downscaling adds value to the NSWS 
simulations compared to the downscaled product, the spa-
tial distribution of mean NSWS for 1991–2018 is plotted in 
Fig. 13 for observations, ERA5 (i.e., the reanalysis which 
has shown to better simulate NSWS over the TP), and the 
two downscaled products WRF-9km and HAR. As already 
seen from Fig. 6, ERA5 shows higher NSWS values in the 
center of the plateau (as also seen in the observations) and 
simulates NSWS conditions following the complex terrain 
features (e.g., the large valleys in the southeast of the TP). 
Instead, WRF-9km only shows strong mean winds in the 
southern part of the plateau, with weaker winds from the 
center to the north. Mean NSWS in HAR is greater in the 
west, and it decreases by moving to the east. HAR, similar 
to WRF-9km, does not display the feature with higher wind 
conditions in the center-west of the TP, and a generally lower 
NSWS in all its surroundings. Fig. S5 in the supplementary 
material confirms those discrepancies between observed 
NSWS and NSWS from the two downscaled products. 
When plotting the mean observed NSWS against the simu-
lated one, WRF-9km poorly simulates wind conditions: all 
the scatter-points are greatly positively biased (i.e., NSWS 
higher in WRF-9km compared to observations). For HAR, 
biases in the modeling are also seen as modeled NSWS 
means are in general higher than the observed ones. When 
it comes to the modeling of the seasonal cycle (Fig. S6 in 
the supplementary material), in a similar way both WRF-
9km and HAR overestimate the observed one, not showing 
any improvements compared to the downscaled ERA5. For 
these reasons, when it comes to aggregated climatology, the 
two downscaled products WRF-9km and HAR do not better 
simulate NSWS over the TP compared to ERA5. But the 
added value of downscaled products should be searched in 
the better modeling of shorter spatial- and time-scale pro-
cesses, as the diurnal cycle (Ou et al. 2020).

Therefore, we explore here the mean diurnal cycle of 
observed NSWS and then we compare it with the one simu-
lated by ERA5 and the two downscaling products (Fig. 14). 
Figure 14a shows that the mean 3-hourly sub-daily varia-
tions of NSWS calculated using the 27 stations of the Had-
ISD dataset peaks at 9 UTC (~ 15–16 local time), in line 
with what shown by Zhao et al. (2019). The annual averaged 
diurnal cycle from ERA5 and WRF-9km also peaks around 
9 UTC. Instead, the diurnal cycle of HAR peaks earlier 
(around 6 UTC). WRF-9km displays the lowest correlation 
value compared to ERA5 and HAR. In addition, WRF-9km 
largely overestimates the magnitude of the diurnal variations 
(mean positive bias and RMSE of ~ 2.5 m s−1). While HAR 
exhibits a large mean RMSE of approximately 1.5 m s−1, it 
is important to note that the high positive bias (~ 1.3 m s−1) 
is a substantial component of this error. In contrast, ERA5 

demonstrates a considerably smaller mean RMSE compared 
to both WRF-9km and HAR, with an average negative bias 
of approximately 0.5 m s−1.

To further explore the observed 3-hourly diurnal cycle of 
NSWS, we apply the k-mean clustering to the dataset of 27 
observed series. By conducting the cluster analysis with an 
increasing number of classes (Fig. 15 top row), the anoma-
lies of the mean diurnal cycle do not drastically change in 
shape (always peak at 9UTC), but the peak becomes more 
pronounced. The more pronounced diurnal cycle seems to 
be partly related to station elevation: the classes which peaks 
more, are the ones with greater mean elevation. When look-
ing at the clusters identified in the simulated diurnal cycles 
(Fig. 15 bottom row), all the classes in ERA5 peaks at 9 
UTC and differ only in how this peak is pronounced. This is 
partly shown also in HAR, but, especially in WRF-9km, the 
identified classes do not only differ in how the 9 UTC peak 
is pronounced, but also in the time when it is recorded and 
in the overall shape of the mean diurnal variations.

Zhao et al. (2019) previously investigated diurnal vari-
ations in NSWS over the TP, finding remarkable regional 
characteristics with respect to the diurnal variations. For 
example, in the eastern of the plateau, the minimum and 
the maximum recorded wind speed occur about 1 h later 
than in the west; or the diurnal cycle at the stations in the 
Qaidam Basin differ significantly from the one observed at 
the other stations elsewhere on the plateau. Unfortunately, 
for this study hourly data were not available, and the use of 
3-hourly outputs for exploring the diurnal cycle character-
istics may mask possible regional differences.

Therefore, from what is shown here, HAR and WRF-
9km do not improve the simulation of the mean diurnal 
cycle over the TP, even if additional analysis (using hourly 
statistics) may be needed. To conclude, both HAR and 
WRF-9km do not show a significant added value in the 
simulation of NSWS statistics over the TP compared to the 
downscaled product ERA5. The two dynamical downscal-
ings may improve their performance in simulating NSWS 
over the TP by better considering the orographic impact on 
surface flow once the effects of subgrid-scale topography 
(i.e., topographic drag) are included through correct para-
metrization (Jiménez and Dudhia 2012). Zhou et al. (2017) 
and Zhou et al. (2018) highlight that the subgrid orographic 
drag scheme, especially the turbulent orographic form drag 
scheme, can efficiently reduce NSWS biases in WRF simu-
lations over the TP, a region surrounded by high mountains 
with high orographic variance, where the local climate is 
very sensitive to orographic drag. Therefore, an insufficient 
representation of subgrid orography can lead to systematic 
biases in numerical simulations over complex terrains, and 
improvements in the modeling of atmospheric circulation 
are reached only when the effects of subgrid orographic 
drag are properly parameterized. Moreover, it is necessary 
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to consider the identified errors within ERA5 when explain-
ing the poor performance of the two downscaling prod-
ucts. Since ERA5 serves as the common data source for 
both WRF-9km and HAR, providing the lateral boundary 

conditions, any systematic biases inherent in the reanalysis 
dataset can propagate into the regional climate model simu-
lation through the model input boundaries (Kim et al. 2023).

Fig. 14   Comparison between observed and simulated NSWS diurnal 
cycle. (a) Mean 3-hourly diurnal cycle of NSWS calculated using 
observations (black line), ERA5 (red line), WRF-9km (blue line), and 
HAR (green line) for 2017–2018. (b) Averaged (i.e., average over all 
the stations/closest grid points) Pearson’s correlation between mean 
3-hourly diurnal cycle from observed NSWS and from ERA5, WRF-
9km and HAR for 2017–2018. It is reported the percentage of the 
closest grid points showing significant correlation at significant level 
p < 0.05. (c) Averaged (i.e., averaged over all the stations/closest grid 

points) RMSE between mean 3-hourly diurnal cycle from observed 
NSWS and from ERA5, WRF-9km and HAR for 2017–2018. (d) 
Averaged (i.e., averaged over all the stations/closest grid points) bias 
(modeled minus observed) between mean 3-hourly diurnal cycle from 
observed NSWS and from ERA5, WRF-9km and HAR for 2017–
2018. The error bar (± 1 standard deviation around the mean value) 
shows the standard deviation of the statistic metric calculated for all 
the stations/closest grid points
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5 � Summary and conclusions

This study explored the climatology of NSWS over the TP 
using observations, reanalysis products, and high-resolution 
climate model simulations. The analysis of observed data 
revealed that the mean and standard deviation of NSWS 
is greater at the stations located in the central areas of the 

plateau, proving evidence that wind speed increases with 
increasing altitude over the TP. In addition, based on wind 
characteristics such as mean values and seasonal cycles, 
three distinct regions with different wind regimes were 
identified: (1) the central areas of the plateau, character-
ized by higher average elevation than the rest of the TP; (2) 
the eastern and the peripheral regions of the TP; and (3) 

Fig. 15   Clustering of the mean 3-hourly diurnal cycle of observed 
and simulated NSWS anomalies for 2017–2018. In particular, on the 
top row: Clustering of the mean 3-hourly diurnal cycle of observed 
NSWS anomalies for 2017–2018 using 2 clusters (a), 3 clusters (b), 
and 4 clusters (c). On the bottom row: Clustering (with 3 classes) 
of the 2017–2018 mean 3-hourly diurnal cycle of NSWS anomalies 

from the closest grid points of ERA5 (d), WRF-9km (e), and HAR 
(f). Light-colored lines represent the diurnal cycles of each station/
closest grid point series in the given cluster, while the diurnal cycle 
cluster-mean (i.e., average over all the stations/grid points in the 
given cluster) is plotted with the dark-colored thicker line



	 L. Minola et al.

1 3

the topographic depression of the Qaidam basin, where the 
blocking effect of the surrounding mountainous terrain plays 
a significant role.

ERA5 is the reanalysis dataset which matches better the 
measured NSWS. Compared to its predecessor ERAINT, 
which can only represent two regions of different wind con-
ditions, ERA5 is able to represent the three identified wind 
regimes: this improvement should be likely attributed to its 
finer spatial and temporal resolution, better model physics, 
more data assimilated, and the more advanced assimilation 
method. However, the newest ERA5-Land does not demon-
strate advances compared to ERA5, as it primarily replays 
the land component of ERA5 with a finer spatial resolution, 
without any improvements in the parametrization scheme 
and model physics.

To assess the added values of dynamical downscaling, 
two different downscaling products of ERA5 (i.e., WRF-
9km and HAR) were compared against the observations. 
However, both dynamical downscaling products fail to 
capture the observed spatial distribution characteristics of 
NSWS and do not improve the simulation of the 3-hourly 
diurnal cycle compared to ERA5. Therefore, it can be con-
cluded that these high-resolution regional models do not add 
value in reproducing the observed NSWS climatology com-
pared to ERA5. Consequently, the outputs of these regional 
models should not be prioritized over those of ERA5 when 
simulating NSWS statistics over the TP.

The biases of NSWS in the dynamical downscalings may 
partly result from an insufficient representation of subgrid 
orography through parametrization. Therefore, the abil-
ity of dynamical downscaling to simulate NSWS may be 
enhanced by including the topographic drag through appro-
priate parametrization of subgrid orographic drag. This 
aspect should be explored by analyzing the year-long WRF 
simulation which includes the turbulent orographic drag 
scheme implemented by Zhou et al. (2018). This analysis 
will be conducted within the framework of the Convection-
Permitting Third Pole (CPTP) project, a Flagship Pilot Study 
(FPS) endorsed by the World Climate Research Programme-
Coordinated Regional Climate Downscaling Experiment 
(WCRP-CORDEX) (http://​rcg.​gvc.​gu.​se/​cordex_​fps_​cptp/; 
last accessed 7 August 2023).
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