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A B S T R A C T

Thunderstorms can be a large source of disruption for European air-traffic management causing a chaotic state
of operation within the airspace system. In current practice, air-traffic managers are provided with imprecise
forecasts which limit their ability to plan strategically. As a result, weather mitigation is performed using
tactical measures with a time horizon of three hours. Increasing the lead time of thunderstorm predictions to
the day before operations could help air-traffic managers plan around weather and improve the efficiency of
air-traffic-management operations. Emerging techniques based on machine learning have provided promising
results, partly attributed to reduced human bias and improved capacity in predicting thunderstorms purely from
numerical weather prediction data. In this paper, we expand on our previous work on thunderstorm forecasting,
by applying convolutional neural networks (CNNs) to exploit the spatial characteristics embedded in the
weather data. The learning task of predicting convection is formulated as a binary-classification problem based
on satellite data. The performance of multiple CNN-based architectures, including a fully-convolutional neural
network (FCN), a CNN-based encoder–decoder, a U-Net, and a pyramid-scene parsing network (PSPNet) are
compared against a multi-layer-perceptron (MLP) network. Our work indicates that CNN-based architectures
improve the performance of point-prediction models, with a fully-convolutional neural-network architecture
having the best performance. Results show that CNN-based architectures can be used to increase the prediction
lead time of thunderstorms. Lastly, a case study illustrating the applications of convection-prediction models
in an air-traffic-management setting is presented.

1. Introduction

The European airspace can handle more than 30 thousand flights in
a single day. Managing such a high volume of flights is a responsibility
that falls on air navigation service providers (ANSPs). There are 37
ANSPs in Europe, each typically operating at the national level, for
instance, ENAIRE in Spain or DSNA (Direction des Services de la
navigation aérienne) in France. The coordination of flight plans and
actual traffic among so many ANSPs is facilitated by the international
organization EUROCONTROL, specifically the Network Manager Oper-
ations Center in Brussels. Most of the time this setup works well, and
flight operations run smoothly, however, convective weather wreaks
havoc on the air space system, with one-quarter of the total delay in the
system being directly attributed to weather (EUROCONTROL, 2019).
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Thunderstorms are frequent in the summer and coincide with a
period of high air-traffic demand in the European airspace. This com-
bination of bad weather and high demand causes significant disruption
to air-traffic-management operations. Managing airborne traffic during
thunderstorms can quickly become chaotic, with the sudden decreases
in airport and airspace capacity, flights must divert from their intended
flight paths, enter holding procedures in trying conditions, and manage
fuel reserves as they scramble to find accommodations at alternate
airports. On the ground, flights are subject to delays and cancellations
that quickly propagate throughout the network.

In current European airspace operations, air-traffic managers are
provided with weather information using a convection risk map, an
example of which is shown in Fig. 1. This product is provided via
pdf in an email on the morning of the day of operations and provides
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Fig. 1. Example of Cross-border Convection Advisory Product.
Source: Figure extracted from https://www.eumetnet.eu/.

convective weather advisories in 3-hour blocks. Due to the lack of
spatial and temporal resolution in the product, ANSPs typically do
not make strategic modifications to their operational plans; instead,
choosing to make tactical adjustments in real-time according to the
evolving weather situation. This reactive approach to handling disrup-
tive weather events is not coordinated among the multiple ANSPs in
Europe and leads to inefficiency in the system.

Forecasting the origin and evolution of convective weather remains
a challenge. The general meteorological conditions necessary for con-
vection are well understood, however, the exact timing and location of
initiation triggers can be difficult to identify. As a result, nowcasting
is the preferred technique for thunderstorm prediction. Nowcasting
consists of short-term (1–3 h) predictions based on the extrapolation
of observational data such as satellite images or radar (Wilson et al.,
1998). In the United States, the Corridor Integrated Weather System
(CIWS) is a nowcasting-based system offering meteorological informa-
tion to the aviation community (Evans & Ducot, 2006). Nowcasting can
offer precise weather predictions in the near term, but the extrapolation
quickly breaks down for longer time horizons.

In this research, we propose increasing the lead time of convection
prediction by exploiting the advances in numerical-weather-prediction
(NWP) products. NWPs model the atmospheric processes on a compu-
tational grid using computer simulations and can estimate a large set
of atmospheric parameters at each grid cell by using partial differential
equations to capture the fluid flow and thermodynamic characteristics
among neighboring grid cells.

With the aid of supercomputers, NWPs can provide fairly accu-
rate forecasts of the state of the atmosphere multiple days into the
future. Note that, while NWPs serve as the source for the majority of
the weather forecast we encounter in our daily lives, they have not
traditionally been used for thunderstorm prediction because the size
and lifespan of thunderstorms are small compared with the spatial and
temporal resolution of NWP models.

Advances in weather science and high-performance computing have
greatly improved the prediction capabilities of NWPs in recent years.
In our research, we set out to leverage these improvements, and the
great potential of machine-learning techniques (Vinuesa et al., 2020),
to predict thunderstorms using NWPs at the timescales (greater than
24 h) required for the pre-tactical phase of air-traffic-flow management
(ATFM).

Convolutional neural networks (CNNs) have been used for the anal-
ysis of satellite images in a wide range of applications (Jean et al., 2016;
Sirmacek & Vinuesa, 2022), including the development of interpretable
models which enable obtaining insight into the model structure (Vin-
uesa & Sirmacek, 2021). For shorter time horizons, CNN-based methods
have been used successfully to improve the nowcasting of weather phe-
nomena, and, generally, machine-learning methods have been shown
to effectively improve numerical simulations of fluid flows (Vinuesa &
Brunton, 2022).

In Han et al. (2019), CNNs were applied to weather radar data
to improve the nowcasting of convective weather. In Lagerquist et al.
(2020), CNN methods were also used on radar images to predict
tornadoes in the next hour. However, predictions at these time scales
are incompatible with pre-tactical ATFM operations. Note that machine
learning has also been used on NWP data to predict thunderstorms for
longer time horizons. In Šaur (2017), NWP and historical weather data
were used to train a fully connected network with one hidden layer,
to predict convective precipitation that may cause flash floods over the
Zlin region of the Czech Republic up to 24 h in advance. In Collins
and Tissot (2015), a deep-neural-network model was developed using
cloud-to-ground lightning data to predict the occurrence of thunder-
storms in certain regions of Texas (US), within two-hour time steps for
time horizons of up to 15 h. Random forests have also been applied on
NWP to predict the probability of lightning strikes over the Alaskan
tundra (He & Loboda, 2020). In Simon et al. (2018), thunderstorm
occurrence within a six-hour period was predicted over the European
eastern Alps up to five days in advance using generalized additive
models (GAMs) and gradient boosting with cloud-to-ground lightning
data. Convolutional neural networks have also been applied on NWP
tools to predict multiple types of convective weather within six hours
up to 72 h in advance (Zhou et al., 2019). While these studies have been
successful in using machine learning to predict convective weather,
their specific applications did not require spatiotemporal resolution
or the continental-scale geographic domain necessary for pre-tactical
ATFM applications.

In this paper, we apply machine learning to predict thunderstorm
occurrence over a large portion of western Europe, in hourly time steps
for time horizons of up to 36 h. An ensemble NWP with 0.25-degree
spatial resolution and satellite observations from the EUMETSAT NWC-
SAF Rapid-Development Thunderstorm product are used to train a

https://www.eumetnet.eu/
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convolutional neural network to provide the likelihood of convective
weather up to 36 h in advance. The goal of this research is to provide
a pan-European convective weather forecast at time scales compatible
with pre-tactical air traffic flow management operations.

Computer-vision methods, such as convolutional neural networks
(CNNs) (LeCun et al., 2015), are able to exploit spatial information
in the data to improve the predictions. In fact, and thanks to the
successive application of convolution operations, the network can hi-
erarchically build progressively more complex features relevant to the
predictions at hand. The applicability of CNNs has been extensively
demonstrated in the context of fluid mechanics (Guastoni et al., 2021),
and even more complex architectures such as the generative adversarial
networks (GANs) produce excellent performance in this type of bench-
mark (Güemes et al., 2021). CNNs and GANs have a great advantage
over e.g. multilayer perceptrons (MLPs), in which the spatial informa-
tion in the data cannot be effectively exploited, as also thoroughly
assessed in previous work (Srinivasan et al., 2019). Consequently, and
with the aim of exploiting the spatial information present in the current
datasets, the learning task of predicting convective weather from NWP
is formulated as an image-segmentation problem. Image segmentation
has been widely applied on tasks related to medical-image analysis,
robotic perception and video surveillance (Minaee et al., 2021).

This research aims to improve the forecasting of convective weather
by applying an image segmentation approach that combines satellite
observations with NWPs. While our model is not trained with the
precise labeled image data often used in segmentation problems, here
we show that the coupling of NWP grids with satellite images will allow
to train the CNN models to correctly classify convective regions. To the
authors’ knowledge, this is the first time that an image-segmentation
methodology has been applied to NWPs. Previous use of CNNs on NWPs
have used architectures that conclude with fully connected layers for
the task of classification tasks (Zhou et al., 2019). In Weyn et al. (2020)
an encoder–decoder architecture is utilized but for the prediction of
basic atmospheric variables rather than severe weather. This work
presents a novel approach that combines different types of datasets and
improves the forecast.

The rest of the paper is organized into the following sections:
Section 2 presents an overview of the weather data utilized, Section 3
details the methodology and CNN architectures, with results presented
in Section 4. Examples of model application within an ATFM context
are presented in Section 5 and lastly, a summary and conclusions are
provided in Section 6.

2. Description of the weather database

In developing the present convection-prediction model, data from
ensemble NWP forecasts and satellite thunderstorm observations are
used. Given the lead times required for pre-tactical ATFM, the model
input is provided by ensemble NWP forecasts, as these are available
36 h in advance. Satellite-image data is used for training and evaluation
of the model as it provides an accurate representation of convective
events. The data used for training and validation is from June and
July 2018, respectively, with a geographical domain covering vast
portions of western Europe and northern Africa as seen in Fig. 2. Test
data is used from dates in July 2018 as well as July 2019 (unseen
by the networks), within the aforementioned geographical domain.
It is important to note that the NWP grid size corresponding to the
geographic domain has 128 × 128 grid points. Since we apply an image-
segmentation methodology, this grid size is favorable for performing
multiple instances of max-pooling and up-sampling calculations (see
Section 3).

Fig. 2. Geographical domain of forecast and observational weather data.

2.1. Ensemble NWP

The model input is comprised of NWP data from the European
Centre for Medium-Range Weather Forecasts (ECMWF) Ensemble Pre-
diction System (EPS). Ensemble forecasting is a technique where rather
than providing on possible future scenario of the atmosphere as with
traditional NWPs, various scenarios are created by running multiple
models, perturbing initial conditions, or using different combinations of
physical parameterization schemes. Perturbations in parameters are in
line with the observation errors in the current state of the atmosphere.
By pooling the resulting multiple forecasts it is possible to provide
an estimate of the uncertainty associated with predictions of the at-
mosphere. The ECMWF EPS product comprises 50 individual forecast
‘‘members’’, plus a control member based on the most accurate estimate
of the initial conditions. The assumption is that the probability of
occurrence of each of the 50 members is equally likely, and while one
ensemble member may prove to be most accurate at a given geographi-
cal location, this need not be the case at another location (Palmer et al.,
2006). The ECMWF EPS releases new forecasts four times per day at 00,
06, 12, and 18 UTC, and can predict the state of the atmosphere for up
to 15 days.

The spatial resolution of the forecast is 0.25 degrees in longitude
and latitude, equivalent to roughly 15 nautical miles.

The parameters selected to train the model were chosen based on
their relevance to the following physical characteristics of convective
weather and thunderstorms (CAE, 2015):

• Lifting force or trigger mechanism to produce early saturation of
air. In convective storms, this trigger action is typically caused by
heat from the Earth’s surface causing moist air to rise.

• Sufficient moisture in the atmosphere to form and maintain the
cloud.

• Atmospheric instability determined by the vertical temperature
profile or lapse rate.

Based on these conditions 18 EPS parameters we selected as inputs
to the model. These 18 parameters were chosen to capture the three
essential elements of convection; lifting force, moisture, and instabil-
ity. Lifting force was captured by parameters relating to temperature,
pressure, and heat flux. Parameters relating to dewpoint, rain rate, and
column water were meant to capture the moisture in the atmosphere.
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Table 1
Total list of parameters used to train the models.

Parameter Short name

2-m dewpoint 2d
2-m temperature 2t
Convective available potential energy cape
Convective available potential energy 1 h before cape-1
Convective available potential energy 2 h before cape-2
Convective available potential energy 3 h before cape-3
Convective inhibition cin
Convective precipitation cp
Convective rain rate crr
Height of convective cloud top hcct
Hour of day hour
K index kx
Large-scale precipitation lsp
Large-scale rain rate lsrr
Surface latent heat flux slhf
Surface pressure sp
Surface sensible heat flux sshf
Range of forecast range
Total cloud cover tcc
Total column water tcw
Total column water vapor tcwv
Total totals index totalx
Geopotential z

Lastly, instability was obtained from parameters such as convective
available potential, convective inhibition, K index and total totals
index. Apart from the 18 EPS parameters, additional parameters hour of
the day and range of forecast were also included to account for diurnal
weather patterns and capture any range-dependent bias that could
exist. Additionally, the convective-available-potential-energy (CAPE)
parameter values from the three previous time steps were also included,
given that large values of CAPE are common during periods leading up
to the storm. A total of 23 input parameters (18 EPS parameters, one
hour of day, one range of forecast, and three time-lagged CAPE) were
chosen as input to the model, the complete list is provided in Table 1.

2.2. Satellite data

Target data for the model is provided using the Rapid-Development
Thunderstorm (RDT) product developed by Météo-France within the
EUMETSAT NWC-SAF framework. The RDT algorithm makes use of
geostationary satellite data to monitor and track active convective cells
in the atmosphere. The product outputs information on a 15-minute
time interval related to convective clouds from the mesoscale (200–
2000 km) down to hundreds of meters (Lee et al., 2020). The RDT
algorithm is capable of capturing the shape, cloud top, movement, and
severity of convective cells. Despite the rich characterization provided
by the RDT product, our model was formulated as a binary classifier
and only consider the shape and location of the convective cells.

2.3. Experimental data set

ECMWF EPS forecast data was blended with RDT observations to
create the training, validation, and test data sets. The entire experimen-
tal data set consisted of forecasts and observations from summer 2018.
A description of the exact days selected for each of the training, as well
as the validation and testing data subsets, is provided in Table 2. Note
that the test data is taken from dates unseen by the network during
training.

In blending the data, hourly EPS data from the 00 and 12 UTC fore-
cast releases up to 36 h from the 50 perturbed forecast members was
considered. The RDT images were aggregated hourly to be consistent
with the EPS time step. By overlaying the RDT convective cell polygons
over the EPS grid, it was possible to provide a binary classification of
the grid points where a convective cell was present during the hour.

Table 2
Data sets used for training, validation and testing.

Dataset Date range Number of days

Training June 1–30, 2018 30
Validation July 14–16, 2018 3
Testing July 20–26, 2018 7

Fig. 3 provides an example of how four RDT images are processed
to establish the target function. Given the forecast range of 36 h, and
the forecasts release frequency of 12 h, different range forecasts valid
for the same time were used to train, validate and test the model.
Having data with varying forecast ranges allowed us to analyze how
the forecast degrades with an increasing time horizon.

3. Methodology

The objective of this research is to explore how machine learning
models with convolutional neural network architectures can be applied
on weather data to improve the prediction of thunderstorms. The
problem is formulated similarly to an image segmentation task, where
the model must learn to classify specific regions within the image.
However, rather than using an RGB image with 3 color channels, the
input is provided using N channels, where N represents the number
of NWP parameters. For the output, rather than training with labeled
segmented images, the model is trained with convection observations.
A visual comparison of the methodology used for convection prediction
with the traditional image segmentation approach is provided in Fig. 4.

In this article we explore several CNN-based architectures including
a fully-convolutional network, a CNN-based encoder–decoder, a U-Net,
and a pyramid-scene parsing network. Within the methodology section,
a basic overview of how layers and operations are done within a
CNN-based model is provided the first subsection. Next, we provide a
description of the four model architectures explored in this study along
with architectural schematics in Figs. 4, 5, 6, and 7. Lastly, details on
the computer software and hardware utilized during the training of the
models is provided.

3.1. Convolutional neural networks

In this study, we employ CNN-based architectures for the classifica-
tion of convective and non-convective regions. The objective is to ex-
ploit the spatial information in the input data through the convolutional
layers and use it for classification. As the input fields exhibit coherent
features and spatial correlations, learning such features should lead
to improved accuracy and generalization. At a given two-dimensional
convolution layer, the input is convolved with a filter of size 𝐻×𝑊 ×𝐾,
where 𝐾 is the number of kernels, which are the two-dimensional slices
of the filter. This is mathematically expressed as:

𝑧(𝑙)𝑖𝑗𝑚 = 𝜑

( 𝐾
∑

𝑘=1

𝐻
∑

𝑝=1

𝑊
∑

𝑞=1
𝑧(𝑙−1)𝑖+𝑝,𝑗+𝑞,𝑘𝑤

(𝑙)
𝑝𝑞𝑘𝑚 + 𝑏(𝑙)𝑖𝑗𝑚

)

, (1)

where 𝑧(𝑙−1) and 𝑧(𝑙) indicate the inputs and outputs of 𝑙th layer,
respectively, and 𝑚 denotes the number of output channels. Each pixel
is represented by (𝑖, 𝑗, 𝑘) and (𝑖, 𝑗, 𝑚) for the input and output feature
maps, respectively. Furthermore, 𝑤(𝑙) and 𝑏(𝑙) represent weights and
biases of the 𝑙th layer, respectively, and 𝜑 denotes the non-linear
activation function. Usually, the number of filter kernels 𝐾 changes
with the depth of the network. To obtain a feature map with 𝑀
channels at the output, we need 𝐻 × 𝑊 × 𝐾 × 𝑀 trainable variables
as 𝑤(𝑙).

A schematic of the convolution operation denoted by ∗ is illustrated
in Fig. 5(a). It is common to combine convolutional layers with pooling
and upsampling operations. The pooling operation compresses the data
by a factor of (1∕𝑃 )2 so that a region with the size of 𝑃 × 𝑃 is
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Fig. 3. (Left) RDT satellite observations and (right) resulting target function for thunderstorms occurring at 17:00 on June 8th, 2018.

Fig. 4. Methodology for prediction convection using Convolutional Neural Network is based on an image segmentation approach.

Fig. 5. A schematic view of (a) convolution operation and (b) max-pooling and upsampling operations.

represented by its maximum or mean value, which correspond to max-
or average-pooling operations, respectively. Moreover, the upsampling
operation increases the data size by a factor of 𝑃 2, e.g. through a
nearest-neighbor or bilinear interpolation. Schematic representations
of max-pooling and upsampling operations are depicted in Fig. 5(b).
For all the CNN models in this paper, we consider two-dimensional
snapshots of the 23 variables from the NWP forecast (see Table 1)

as the inputs, and the binary images representing convective and
non-convective classes as the outputs, as shown in Fig. 3(b).

3.1.1. Depthwise separable convolutions
A convolution layer aims at learning filters in a three-dimensional

space; two spatial dimensions and a channel dimension. Therefore, a
convolution kernel maps both spatial correlations and cross-channel
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Fig. 6. A schematic view of the Enc-Dec model. The color coding for each layer is: 2D separable convolution ( ), ReLU activation ( ), spatial dropout ( ), max pooling
( ), upsampling ( ), and Sigmoid activation ( ). The numbers in brackets denote the size of the feature maps.

Fig. 7. A schematic view of the U-Net model. The color coding for each layer is: 2D separable convolution ( ), ReLU activation ( ), spatial dropout ( ), max pooling
( ), upsampling ( ), concatenation ( ), and Sigmoid activation ( ). The connections on the top concatenate the present layer with features from previous layers.

correlations simultaneously. The main idea behind depthwise separable
convolutions (Chollet, 2017) is to perform an efficient convolution
operation by explicitly factoring it to a series of operations accounting
for spatial correlations and cross-channel correlations independently.
A depthwise separable convolution, also known as separable convolu-
tion, consists of a spatial convolution performed independently over
each channel of the input followed by a 1 × 1 convolution (the
so-called pointwise convolution (Lin et al., 2014)) which accounts for
cross-channel correlations. This can be mathematically expressed as:

𝑠(𝑙)𝑖𝑗𝑘 =
𝐻
∑

𝑝=1

𝑊
∑

𝑞=1
𝑧(𝑙−1)𝑖+𝑝,𝑗+𝑞,𝑘

(𝑙)
𝑝𝑞𝑘,

𝑧(𝑙)𝑖𝑗𝑚 = 𝜑

( 𝐾
∑

𝑘=1
𝑠(𝑙)𝑖,𝑗,𝑘𝜔

(𝑙)
𝑘𝑚 + 𝑏(𝑙)𝑖𝑗𝑚

)

,

(2)

where 𝑠(𝑙) indicates the output of spatial convolution.  (𝑙) and 𝜔(𝑙)

represent the trainable weights for the spatial and pointwise convo-
lutions, respectively. To compute a feature map with 𝑀 channels at
the output of depthwise separable convolutions, we need 𝐻 ×𝑊 ×𝐾 +
𝐾 × 𝑀 trainable weights; this leads to a lower number of parameters
and a reduced computational cost in comparison with conventional
(non-separable) convolution.

Here, we employ depthwise separable convolution in all the CNN-
based models to reduce the model complexity and avoid overfitting.
Hereafter, we refer to the depthwise separable convolution as separable
convolution.

3.2. Models

In this paper, four models are considered: a fully-convolutional
network, a CNN-based encoder–decoder, a U-Net, and a pyramid-scene
parsing network. These four networks were chosen to explore the
various possibilities of exploiting spatial information in the data with
architectures of different but complementary capabilities. The fully-
convolutional network is the basic model involving convolutions, which

should serve as an adequate baseline to assess the prediction capa-
bilities of these computer-vision-based strategies. As opposed to the
standard CNN, in the CNN-based encoder–decoder (Eivazi et al., 2022)
the data is first downsampled and then upsampled while the subsequent
convolutions are being applied. This allows to first focus on the most
essential features from the input data, and when the smallest dimen-
sion is reached these features are again increased and highlighted,
adding additional detail in the generation of patterns. The U-net is
characterized by skip connections, in which the feature map from the
first layers is fed directly into the last ones. This allows to combine
simpler and more complex features when reaching the last layers, and
also exhibits benefits in the context of the back-propagation process.
Finally, the pyramid-scene-parsing network (PSPNet) relies on the so-
called pyramid-parsing module (PPM) to combine local information
with features characteristic of the global features in the input data. This
combination of features and scales has the potential to produce more
nuanced and accurate predictions. The strengths and weaknesses of the
various methods applied to our particular problem will be discussed in
the next sections.

3.2.1. Fully-convolutional neural networks
We implement a fully-convolutional network (FCN) as the first CNN-

based model. Here, we use three blocks of separable convolutions
followed by spatial dropouts of fraction 0.2 (without down-sampling
or upsampling) to process the input data, and at the final layer, a
1 × 1 convolution with a sigmoid activation function to map the feature
maps to the pixel-level binary classes. We consider two channels at
the output: in the first channel, a pixel value of one represents the
convective region and zero indicates the non-convective region. For
the second output channel, we consider the opposite, i.e., a pixel
value of one represents a non-convective region and zero represents
a convective region. Each separable convolution consists of 16 filters
with a kernel size of 𝐻 × 𝑊 = 3 × 3 and rectified linear unit (ReLU)
as the activation function. Same class representation and final layer
architecture are used for other CNN-based models.
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Fig. 8. A schematic view of the PSPNet model. The color coding for each layer is: ResNet model for feature extraction ( ), 2D separable convolution ( ), average pooling
( ), upsampling through bilinear interpolation ( ), ReLU activation ( ), sigmoid activation ( ), spatial dropout ( ) and concatenation ( ).

3.2.2. CNN-based encoder–decoder architecture
We employ a CNN-based encoder–decoder (Enc-Dec) architecture

as the second model. A schematic representation of this model is
depicted in Fig. 6. As it can be seen, we use repeated application of
a separable convolution layer consisting of 16 filters with a kernel size
of 𝐻 × 𝑊 = 3 × 3 and rectified linear unit (ReLU) as the activation
function, followed by a spatial dropout of fraction 0.2 and a max-
pooling operation with 𝑃 = 2 for down-sampling through the encoder.
We keep the number of feature channels equal to 16 throughout the
network. The upsampling process is performed through the decoder
part, which comprises two consecutive steps of a 3 × 3 separable
convolution with a ReLU activation function, followed by a spatial
dropout of fraction 0.2 and an upsampling operation using nearest-
neighbor interpolation. At the final layer, a 1 × 1 convolution with a
sigmoid activation function is implemented to map the feature maps to
the desired number of classes.

3.2.3. U-Net architecture
In an encoder–decoder architecture, the implementation of multiple

down-sampling steps in the encoder allows the extraction of larger and
more complex features that are useful for classification. However, this
leads to a loss of spatial resolution of the feature maps through the
pooling operations which can reduce the localization accuracy. Since
deeper-layer feature maps contain more semantic meaning and less
location information, combining multi-scale feature maps can improve
performance. Therefore, as the third CNN-based model, we employ the
so-called U-Net architecture for the classification of convective and
non-convective regions. U-Net was first proposed by Ronneberger et al.
(2015) for biomedical-image segmentation. The main idea is to com-
bine the high-resolution features from each step of down-sampling with
the corresponding upsampled feature maps to improve the localization.
Fig. 7 shows a schematic representation of the U-Net architecture
implemented in this study. The network architecture differs from the
CNN-based encoder–decoder model only in the connections between
the encoder and decoder. Through each upsampling step, the concate-
nated feature maps are processed by a separable convolution layer with
a ReLU activation function, a spatial dropout of fraction 0.2, and an
upsampling operation.

3.2.4. Pyramid-scene-parsing network
The next CNN-based architecture we employ is a pyramid-scene-

parsing network (PSPNet) (Zhao et al., 2017), motivated by its state-
of-the-art performance on semantic-segmentation tasks (Zhou et al.,
2018). The main idea behind the PSPNet is to exploit global image-
level context information by different-region-based context aggregation
using the so-called pyramid-parsing module (PPM). This leads to the
incorporation of global and local information together for prediction,

which improves performance. Following the original architecture of
the PSPNet (Zhao et al., 2017), we use a CNN-based residual-neural-
network (ResNet) (He et al., 2016) architecture to extract the features.
The extracted features are passed to a pyramid-parsing module to
perform pixel-level classification. The ResNet model comprises of two
consecutive 3 × 3 separable convolutions, followed by a residual sum-
mation, a ReLU activation, a spatial dropout of fraction 0.2, and a
max-pooling operation with 𝑃 = 2. A schematic of the PSPNet im-
plemented in this study is depicted in Fig. 8. We employ a four-level
pyramid-pooling module that fuses features at four different scales. The
coarsest level is a global pooling which leads to a single bin output.
For the finer levels, i.e. 2, 3 and 4, we consider kernel sizes of 2 × 2,
4 × 4, and 8 × 8, respectively. At each level, we perform an average-
pooling operation followed by a 1 × 1 separable convolution that
reduces the number of channels by 1∕𝑁 , where 𝑁 is the level size of
the pyramid. Then we perform a ReLU activation and an upsampling
operation that directly upsamples the low-dimensional feature maps
to the size of the ResNet feature maps using bilinear interpolation.
Then, we concatenate the PPM feature maps as the global-context
information with the ResNet feature maps followed by a 3 × 3 separable
convolution, a ReLU activation, and a spatial dropout of fraction 0.2. In
the final part, the feature maps are processed by a 1 × 1 convolution,
an upsampling operation using bilinear interpolation, and a sigmoid
activation to generate the final prediction maps.

3.3. Computer implementation

All the deep-learning algorithms are developed using Python 3.8.8
and TensorFlow 2.4.1, and all the training procedures for CNN-based
models are executed on a server with four NVIDIA GeForce RTX 2080
Ti GPUs, each with 11 GB memory, and CUDA 11.6.

4. Results

In this section, we present a comparison of results for the CNN-based
models over the seven days in our test data set. Additionally, results are
also compared with a point-based MLP model architecture presented in
previous research (Jardines et al., 2021). The MLP model in this paper
is trained with the same data set used for the CNN-based methods.
The point-based MLP model consists of one input layer of 23 nodes,
three hidden layers of 16 nodes each, and one output layer of a single
node. Each hidden layer is followed by a dropout of fraction 0.2. In
our discussion, this MLP model will serve as a baseline to compare the
CNN-based model performance. The aim of this research was to explore
machine learning model architectures best suited to predict weather
phenomena. In order to best capture the effect of the model architecture
on the performance it was decided to compare results with previous
research that utilized the exact same data set.
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Fig. 9. Receiver operating characteristic (ROC) curve (left) and precision–recall curve (right) comparing multiple models for the entire test data set.

4.1. Model comparisons

4.1.1. Comparison based on probabilistic representations
The effectiveness of the CNN-based convection indicators is com-

pared with the baseline MLP indicator using a receiver operating
characteristic (ROC) and precision–recall curves. The ROC curve eval-
uates a binary classifier by plotting the sensitivity, or true positive rate
(TPR), against (1-specificity), or the false positive rate (FPR), for vari-
ous threshold settings (Mandrekar, 2010). The probability of detection
is provided by the TPR, while the FPR provides the probability of false
alarms.

However, the ROC curve does not provide information about false
negative predictions corresponding here to the cases where a pixel
belonging to the convective class is falsely predicted as non-convective,
which can be a crucial factor for ATM applications. Another useful
indicator for the comparison of the models is the precision–recall curve,
which shows the tradeoff between precision and recall for different
thresholds. A high AUC for the precision–recall curve represents both
high precision and high recall, where high precision indicates a low
FPR, and high recall shows a low false negative rate (FNR).

With both metrics, the ideal classifier will maximize the area under
the curve (AUC).

In Fig. 9 we show a comparison between the results of the CNN-
based models presented here and the baseline MLP indicator for the
seven days in the test data set. Results are reported in the form of the
ROC curves (left), the precision–recall curves (right), and their AUCs.
From Fig. 9 (left), it is evident that all the CNN-based models outper-
form the baseline MLP indicator based on the ROC AUC. Moreover,
because the CNN curves are always above the baseline MLP curve, they
outperform the baseline independently of the chosen threshold value. In
Fig. 9 (right), it can be observed that all the CNN-based models, except
the Enc-Dec model, provide a higher value for the precision–recall AUC.
The PSPNet curve is always above the MLP curve independently of the
chosen threshold value and shows the highest AUC. It is important to
note that the AUC value depends on the particular data set under anal-
ysis. The NN models are good at identifying areas without convection
(true negatives), thus, analysis of days with few convective storms will
yield greater AUC values.

4.1.2. Decision making
Probabilistic representation of the indicator allows the user to evalu-

ate the risks in making a decision. However, in a real scenario, a general
framework for discussion-making may be required. Here, we propose
an approach for thresholding and binary representation of the model
predictions. To this end, we employ 𝐹𝛽 -score, the weighted harmonic
mean of precision and recall, as:

𝐹𝛽 = (1 + 𝛽2)
precision × recall

(𝛽2 × precision) + recall
, (3)

where 𝛽 ≥ 0 introduces a weighting for recall in the combined score.
A value of 𝛽 < 1 gives more weight to precision, whereas a 𝛽 > 1

lends more weight to recall in the calculation of the score. Considering
more weight for recall in the calculation of the 𝐹𝛽 -score is beneficial
for applications in which reducing the FNR is crucial. 𝐹𝛽 -score reaches
its optimal value at 1 and its wort value at 0. The thresholding value is
computed based on the maximum 𝐹𝛽 -score over the training data set.

We utilize the intersection over union (IoU) or the Jaccard index,
which is one of the most commonly used metrics for semantic segmen-
tation (Minaee et al., 2021), to evaluate the model predictions after
thresholding the data. It is defined as the area of the intersection be-
tween the predicted segmentation map for storm class and the reference
map, divided by the area of their union:

IoU = 𝐽 (ref ., pred.) =
|ref . ∩ pred.|
|ref . ∪ pred.|

, (4)

where ref. and pred. indicate the reference and the predicted segmen-
tation maps for the storm class, respectively.

Fig. 10 shows the probability density function (PDF) of different
score metrics over the testing data set obtained from different models
and three values of 𝛽, i.e. 0.5, 1.0, and 2.0. The metrics are calculated
per each snapshot of the data, and the PDFs show the distribution of
the metrics over the whole testing data set. The vertical dashed lines
show the mean values. Fig. 10(a) depicts the PDF of the ROC AUC
over the testing data set; it can be seen that all the CNN-based models
outperform the MLP model with respect to the ROC AUC, with higher
mean and higher PDFs for larger ROC AUCs. It should be noted that
the ROC AUC is computed using the raw indicator values and does
not depend on the value of 𝛽. In Fig. 10(e∼g) we illustrate the PDFs
of the 𝐹𝛽 -score for 𝛽 of 2.0, 1.0 and 0.5, respectively. The superior
performance of the PSPNet, UNet and FCN is evident in comparison
with the MLP and Enc-Dec models for all the values of 𝛽. The same
conclusion can be drawn from Fig. 10(b∼d) where the PDFs of IoU
are depicted. It can be seen that employing a 𝛽 value of 2.0, which
lends more weight to recall, leads to a better performance with respect
to the IoU of the final thresholded predictions. For 𝛽 of 2.0, superior
performance of PSPNet, UNet, and FCN is evident in comparison with
the MLP and Enc-Dec models, and FCN leads to the best performance
with a mean IoU of 16.40 over the testing data set.

In Fig. 11 we illustrate the results obtained from different models
and 𝛽 of 2.0 for one of the samples in the testing data set. From
the left, columns represent the normalized raw model predictions,
the thresholded predictions, the reference data, and the pixel-level
illustration of the true positive, true negative, false positive, and false
negative predictions. Each row shows the results obtained from one of
the models. It can be seen that for this sample, the FCN model provides
the best ROC AUC and 𝐹𝛽 -score equal to 0.930 and 0.58, respectively,
while the MLP model leads to the ROC AUC of 0.903 and 𝐹𝛽 -score of
0.51. The best IoU is obtained from the UNet model and it is equal to
25.14%. The FCN model leads to a slightly lower IoU of 25.03%. The
lowest IoU is obtained from the MLP model and it is equal to 20.75%.

In Fig. 11(d) the results are reported as the pixel-level illustration
of the true positive (white), true negative (light green), false positive
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Fig. 10. Probability density function (PDF) of the ROC AUC, 𝐹𝛽 -score and IoU metric over the testing data set obtained from different models and three values of 𝛽, i.e. 0.5, 1.0,
and 2.0.

Fig. 11. Results obtained from different models and 𝛽 = 2.0 for one of the samples in
the testing data set. From the left, columns represent the normalized raw model pre-
dictions, the thresholded predictions, the reference data, and the pixel-level illustration
of the true positive (white), true negative (light green), false positive (dark green), and
false negative (black) predictions.

(dark green) and false negative (black) predictions. In general, very
good performance of all the models in capturing the convective regions
can be observed; however, for instance, the FCN model outperforms
the MLP model by providing higher TPR and lower FPR and FNR. This
can be observed in Fig. 12 where we reported the confusion matrices
corresponding to the data represented in Fig. 11.

Fig. 13(a) illustrates the final thresholded predictions obtained from
the FCN model using different values for 𝛽 with the same color coding
as Fig. 11(d). Fig. 13(b) shows the same results in a comparable fashion
together with the reference convective region (colored in black). It can
be seen that increasing the value of 𝛽, which gives recall more weight
against precision in computing the 𝐹𝛽 -score, leads to the reduction of
false-negative predictions but an increase in the false-positive predic-
tions. This can also be observed in Fig. 14 where we reported the
confusion matrices obtained using different values of 𝛽 corresponding
to the data presented in Fig. 13. Results obtained using 𝛽 = 0.5 show
the excellent performance of the FCN model in predicting the operable
region corresponding to true-negative predictions with TNR of 92.80%
and FPR of 2.76%; however, utilizing 𝛽 = 0.5 leads to 2.75% of FNR. By
employing 𝛽 of 2.0 the FNR drops to less than 1%, but TNR decreases to
85.88%, and FPR increases to 9.69%. This tradeoff is a significant factor
for AFTM applications representing the tradeoff between efficiency and
safety, and it can be optimized by selecting an appropriate value for 𝛽.

4.2. Sensitivity to the prevalence of convection

Our results in Fig. 10(b∼d) show that for a considerable number of
samples in the testing data set the model predictions lead to very small
values for IoU. It because some of the samples in the testing data set do
not contain any convective regions. Let us define 𝑝 as the ratio of the
number of pixels belonging to the convective class to the total number
of pixels for each sample (128 × 128). We observed that for very small
values of 𝑝 the obtained IoU could be low. This can be observed in
Fig. 15 where we depict the joint PDF of IoU and 𝑝 for the samples in
the testing data set obtained from the FCN and MLP predictions. The
PDFs of 𝑝 and IoU are presented on the top and the right axes of the
plot, respectively. It can be seen that for the samples with higher values
of 𝑝 very good IoUs can be obtained from both models. Moreover, it can
be observed that FCN outperforms MLP by providing higher density for
higher IoUs.
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Fig. 12. Confusion matrices obtained from different models corresponding to the data presented in Fig. 11.

Fig. 13. Final thresholded results obtained from different values of 𝛽 for one of the samples in the testing data set; (a) the pixel-level illustration of the true positive (white), true
negative (light green), false positive (dark green) and false negative (black) predictions, and (b) the predicted convective class in a comparable fashion together with the reference
convective region (colored in black).

Fig. 14. Confusion matrices obtained from the FCN model predictions thresholded
using different values of 𝛽 and corresponding to the data presented in Fig. 13.

4.3. Sensitivity to temporal information

In this section, we are interested in assessing the impact on the
temporal correlation of the training and test data sets. While the results
presented above show the predictions for a week in July 2018, we
also apply our models to data from July 2019. A second test data
set was constructed based on NWP and satellite data from July 23–
29, 2019. Results are summarized in Fig. 16 in the form of the ROC
curves (left), the precision–recall curves (right), and their AUCs. It can
be observed that although the value of AUCs slightly drops for this test,
very good predictions can be obtained leading to a ROC AUC of above

Fig. 15. Joint PDF of IoU and 𝑝 for the samples in the testing data set obtained from
the FCN and MLP predictions. The PDFs of 𝑝 (black) and IoU are presented on the top
and the right axes of the plot, respectively.



Expert Systems With Applications 241 (2024) 122466

11

A. Jardines et al.

Fig. 16. ROC curve (left) and precision–recall curve (right) comparing multiple models for the entire second test data set from July 23–29, 2019.

0.89 for all the models. Moreover, this test shows the generalizability
of the models on unseen data. The best ROC and precision–recall AUCs
are obtained from the UNet model and they are equal to 0.902 and
0.289, respectively, while the MLP and Enc-Dec models lead to the
lowest AUCs of 0.892 and 0.260 for ROC and precision–recall curves,
respectively. While the results in Fig. 8 show a better performance of
the CNN models than the MLP baseline more clearly, the results in
Fig. 15 indicate that the performance across the CNN models, as well
as the MLP baseline, is rather similar. This means that the lack of seen
information dominates the performance of the models more than the
choice of models. To further verify this claim, it is possible to test the
models using data from another (unseen) week, e.g., July 2020.

5. ATFM application

The objective of this work is to provide air traffic managers with
an awareness of where and when convective weather will develop. In
this section, we present an example of a possible application of the
machine-learning-based indicator in an ATFM operational setting. A
sample case study is presented for July 26, 2019, a date within our
test data set corresponding to strong convective activity within the
European Civil Aviation Conference (ECAC) region. Post-operational
data from Eurocontrol shows that on July 26th, 2019, 125 weather
regulations were activated, resulting in over 120,000 min of ATFM
delay.

Fig. 17 provides a sample case study of the timeline of weather
information available leading up to the day of operations. In this
study, we utilize results from the FCN model to provide an hourly
prediction of convection activity during 10:00–13:00 UTC on July 26th,
2019. Figs. 17(a)–17(c) provide the FCN-based convection forecast that
would have been made available at various release times leading up
to the selected time period. A comparison with Fig. 17(d) shows that
the model predictions correlate well with the RDT observations for
the same period of time. While discrepancies do exist between the
prediction and observation, the model is able to provide a fairly stable
prediction of where and when storms will be present at lead times of
up to 36 h. The stability of the prediction is important to air traffic
managers, as it enables the possibility of taking decisive actions earlier
in the planning process.

Lastly, in Fig. 17(e) sectors with active weather regulations during
each hourly time period are illustrated.

In this qualitative example, one can notice that while there is
some correlation between storms and regulated sectors, the problem is
more complex than simply overlapping sectors and convective weather
regions. Other factors regarding traffic demand, complexity, and sector
capacity must also be considered. Furthermore, additional analysis is
warranted to consider the applied capacity rates of each regulation.
While this is merely a qualitative illustration, it is hypothesized that
a convection indicator based on machine-learning techniques could
provide traffic managers and flight dispatchers an early identification

of problematic areas in the network as well as assistance in developing
strategic mitigation measures to minimize the impact of weather on
operations.

These results indicate to be an improvement over the current Cross-
border Convection Advisory Product, (See Fig. 1), by providing pre-
dictions with hourly temporal resolutions and with longer lead times.
Although additional analysis would be required to translate the model
results into a format that is consistent with the standardized convection
risk matrix (see Fig. 18) used in operations, the implementation of this
work has great potential benefits. A machine learning-based approach
allows for increased automation and digitization in the creation of
aviation weather forecasts. Continuous training and evaluation of the
ML algorithms using live feeds of NWP and observation data would
equip decision-makers with the most current and precise weather in-
formation. Improved weather information earlier in the ATFM process
would enable more coordinated and strategic mitigation strategies,
allowing ANSPs to exercise finesse when applying weather regulations,
more easily identify areas in the network with capacity for re-route
opportunities, and minimize unnecessary delays.

6. Conclusions and outlook

In this study, convolutional neural networks have been applied to
weather data for the creation of a machine-learning-based convection
prediction methodology. Multiple models with convolutional architec-
tures were trained on the same data set consisting of weather forecast
and storm observations from satellite. A comparison of results showed
that the best performance was obtained with the FCN model.

In this paper, we have demonstrated that convolutional methods
provide an improved classification performance over a previously de-
veloped point-based model using an MLP neural network architecture.
Furthermore, the ability of the model to generalize on unseen data is
demonstrated by predicting on an entirely separate data set from 2019.

In the future research focus will be placed on making better use
of the NWP data by formulating a model input that accounts for
the distribution of the ensemble, rather than treating each member
independently. Additionally, follow-on versions of this work must also
consider the temporal relationships within the data by incorporating
model architecture that can account for time series data, such as recur-
rent networks. Additionally, we plan to integrate physical knowledge
into the loss functions by using physics-informed neural networks,
which would leverage additional constraints on the optimization space
explored by the networks during training and potentially improve
their performance. There also exist limitations in the employed data
sources. The use of additional parameters and higher-resolution NWPs
could yield improvement in model performance. Additional storm-
observation data, such as radar and lightning, could also be incorpo-
rated to create a target function that better describes the convective
events. Future efforts should consider approaches capable of integrating
multiple data sources to improve the measurement and prediction of
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Fig. 17. Case study example of showing timeline of model prediction starting at D-1, storm observations, and weather regulation for July 26th, 2019 10:00–13:00 UTC.

additional convective storm elements. For example, data from radar
and lightning detection would help to better categorize the storm in-
tensity, while satellite data could help to measure the cloud-top height.
Rather than only providing the probability of convection, machine
learning models can be designed to provide several outputs relating
to storm elements that are most relevant to the task of air-traffic flow
management, helping traffic managers take more informed decisions
with greater lead times.

A possible application of this research could be to develop a con-
vection advisory framework similar to what is in operation today.
Machine learning models could be continuously trained and validated
with incoming data in order to provide the best possible forecast.
The foreseen product could provide automatic weather advisories in
a digital format that could be distributed to various stakeholders and
integrated with current operational ATFM platforms. Improved weather
information at greater lead times would result in better situational
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Fig. 18. Standard convection risk matrix used in Cross-border Convection Advisory
Product.

awareness, better resource allocation, and possible reduction of delays
in the network. In this paper, we have provided a case study example
based on a historic day with very high convective activity in the Euro-
pean airspace. Although the results show that the relevant convective
information can be provided with higher time resolution and longer
lead times, additional work is still required to transform the machine-
learning model results into the convection risk matrix used by air-traffic
managers.

Lastly, additional research is needed to better determine the impact
of convective weather on traffic demand and sector capacities. This,
in essence, is the real challenge in dealing with weather. Nevertheless,
this study constitutes is a contribution toward providing air-traffic man-
agers with tools to enable the pre-tactical planning of ATFM mitigation
strategies during weather events.
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