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On a Class of Linear Cooperative Systems
with Spatio-temporal Degenerate Potentials

P. Álvarez-Caudevilla , F. Belinchón and C. Brändle

Abstract. This paper analyses a class of parabolic linear cooperative
systems in a cylindrical domain with degenerate spatio-temporal po-
tentials. In other words, potentials vanish in some non-empty connected
subdomains which are disjoint and increase in size temporally. Then, the
vanishing subdomains for the potentials are not cylindrical. Following
a similar idea to the semiclassical analysis behaviour, but done here for
parabolic problems, under these geometrical assumptions, the asymp-
totic behaviour of the system is ascertained when a parameter, in front
of these potentials, goes to infinity. In particular, the strong convergence
of the solutions of the system is obtained using energy methods and the
theory associated with the Γ-convergence. Also, the exponential decay
of the solutions to zero in the exterior of the subdomains where the
potentials vanish is achieved.
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1. Introduction

The analysis shown in this paper focuses on the asymptotic behaviour, when
the parameter λ > 0 goes to infinity, of solutions Uλ = (u1,λ, u2,λ)T to
a parabolic system defined on the cylindrical domain with spatio-temporal
coefficients QT := Ω × (0, T ), where Ω ⊂ R

N is an open set and N ≥ 1,
T > 0, and with spatio-temporal coefficients. In particular, we consider the
linear matrix problem

⎧
⎨

⎩

∂tUλ + (L + Pλ)Uλ = Fλ in QT ,
U = 0 in ∂Ω × (0, T ),
Uλ(x, 0) = U0,λ(x) in Ω,

(Pλ)
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Figure 1. Representation of domain Ω × (0, T ). The cones
correspond to the sets Oai

where the vector U0,λ = (u01,λ, u02,λ)T ∈ H1
0(Ω) := H1

0 (Ω) × H1
0 (Ω) rep-

resents the initial condition of our parabolic problem, Fλ := (f1,λ, f2,λ)T ∈
L2(QT ) := L2(0, T, L2(Ω)) × L2(0, T, L2(Ω)) and

L + Pλ :=
(−Δ 0

0 −Δ

)

+
(

λa1(x, t) −α1(x, t)
−α2(x, t) λa2(x, t)

)

. (1.1)

Moreover, the coefficients considered in the problem are spatially and tem-
porally heterogeneous in the sense that

ai : QT → R
+ ∪ {0}, αi : QT → R

+, i = 1, 2

are bounded measurable functions, with ai non-negative and αi positive, and
such that the domains

Oai
:= Int

({(x, t) ∈ QT : ai(x, t) = 0}) �= ∅, (1.2)

are connected sets with boundary of zero Lebesgue measure in R
N . Further-

more, from a structural point of view, we suppose that these two regions do
not intersect, for any time t ∈ (0, T ). In other words, there exist two cylinders
C1, C2 ∈ QT such that Oa1 ⊂ C1, Oa2 ⊂ C2 and such that C1 and C2 satisfy
C1 ∩ C2 = ∅ for every t ∈ (0, T ); see Fig. 1.

Note that we have not considered any pathological sets due to the fact
that we are interested in seeing how the domains evolve geometrically under
the conditions of our potentials.

As it will be shown throughout this work, the asymptotic behaviour of
Uλ strongly depends on the nature of potentials ai. As a particular example,
if the problem (Pλ) were an eigenvalue problem we might face two different
situations: either there exist non-empty regions where ai vanish. So that, due
to the monotonicity of the principal eigenvalue with respect to the domain
(see [4,6,14] for further details), the first eigenvalue of (Pλ) is bounded above
and the limit problem has a bounded principal eigenvalue associated with an
eigenfunction which concentrates on these regions. Or the first eigenvalue
diverges when λ → ∞ if the potentials are strictly positive with the associ-
ated eigenfunction being positive everywhere inside the cylindrical domain.
Therefore, we will focus on analysing the situations where we have degenerate
spatial and temporal potentials ai, as described above.
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1.1. Organization of the Paper and Main Results

In Sect. 2, we deal with the stationary version of (Pλ), avoiding any depen-
dence on time. For that particular problem, Lax–Milgram theorem shows the
existence and uniqueness of weak solutions Uλ. Then, a standard application
of the Γ-convergence theory based on energy functionals proves the strong
convergence of Uλ when λ → ∞ to the solution U ∈ H1

0 (Ka1) × H1
0 (Ka2) of

a limit elliptic problem (see (P s
∞)), with Kai

being the regions where the po-
tentials ai vanish at any fixed time t. This result is proved in Proposition 2.3
and based on results shown in [3]. Note that we have used the same notation
for the solution of the stationary problem and the parabolic problem (Pλ),
even though they are different. However, since the stationary problem will
be used just as an auxiliary problem, we prefer to avoid any extra notation,
irrelevant for the final purpose of the paper.

The existence and regularity of solutions to (Pλ) is stated in Sect. 3. Note
that, since (Pλ) is a classical system of parabolic equations, existence, unique-
ness, and regularity of the weak solutions follow from the standard Galerkin
method. In particular, under our hypothesis about the initial condition, we
obtain that the solution Uλ ∈ H1

0(QT ) := L2(0, T,H1
0 (Ω)) × L2(0, T,H1

0 (Ω))
is continuous in time and (Pλ) is satisfied in a weak sense.

Finally, as we have said, the main goal of this paper is the study of the
behaviour of the solution of problem (Pλ), Uλ, when the parameter λ tends
to infinity. To this aim, in Sect. 5, we first obtain an estimation for Uλ

sup
λ

(

λ

∫

QT

(AUλ) · Uλ dxdt

)

≤ C, for C a positive constant, (1.3)

which implies that, at the limit, the components ui must be equal to zero
almost everywhere, from now on a.e., in any set of the form {ai > ε} with
ε > 0. Indeed, considering the union for n ∈ N of the sets with ε = 1/n, we ac-
tually obtain that ui = 0 a.e in QT \Oai

, where the vanishing subdomains Oai

are defined in (1.2). Note, even though we are assuming a periodic-parabolic
problem, the results obtained in this work follow an analogous asymptotic
behaviour if considering an elliptic problem with heterogeneous potentials.
Those similar elliptic cooperative systems were analysed previously in [1,3].

The main result proved in see Sect. 5 shows that Uλ converges strongly
in H1

0(QT ) to the unique (weak) solution U of the limit problem
{

∂tU + LU = F in QT ,
U(x, 0) = U0(x) in Ω,

(1.4)

with ui = 0 a.e. in QT \Oai
. The uniqueness of U is proved in Sect. 4. The

convergence of weak solutions of (Pλ) was already observed in [13] in a single
equation setting, as a starting point for a more detailed analysis about the
associated semigroup. This was then used in [13] to analyse the asymptotic
behaviour of a non-linear periodic-parabolic problem of logistic type (first
analysed by Hess [16]; see also [14]) ∂tu−Δu = μu−a(x, t)up. This equation
is used in some models of population dynamics.

Observe that (1.4) is not a standard Cauchy–Dirichlet problem for the
heat equation, since each component of the solution U is defined just in
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Oai
and the sets Oai

can be in general non-cylindrical domains; see Fig. 1.
These types of problems with non-cylindrical domains appear in various ap-
plications and have been under analysis in other contexts for related problems
to (1.4); see for example [9–12,14,19] and the references therein. In this work,
we show the existence and uniqueness of its solution. Indeed, in Sect. 4, a
simple energy bound proves that the solution U of (P∞) has to be unique if it
exists. To prove this result, we use the energy methods performed in Sect. 2
for the stationary-associated problem. These calculations can be seen as the
continuation of a previous work, [3], where the stationary problem was ad-
dressed through the Γ-convergence theory and the paper [2], using different
methodologies.

Furthermore, we should mention that in the particular situation when

fλ := f1,λ = f2,λ a := a1 = a2 α := α1 = α2 w0,λ := u01,λ = u02,λ in Ω,

the unique solution of system (Pλ) becomes (u, v) = (w,w) where
⎧
⎨

⎩

∂twλ + (−Δ + λa(x, t))wλ = α(x, t)wλ + fλ in QT ,
wλ = 0 in ∂Ω × (0, T ),
wλ(x, 0) = w0,λ(x) in Ω,

(1.5)

reducing our model to one single equation setting. Thus, the analysis carried
out here is equivalent to the results obtained in [13,14,18] assuming one single
equation. In [14], the potentials vanish in cylindrical domains and our results
can be applied to similar problems as the ones considered there. On the other
hand, [13] assumes more general non-cylindrical domains and the particular
technical condition ∂tai(x, t) ≤ 0, a.e. in (x, t) ∈ QT , that we impose here
to get the asymptotic behaviour of the problem (1.5), when the parameter λ
goes to infinity, falls into their setting for one single equation.

Our final result, see Sect. 6, is a quantitative measure of the convergence
of the components ui,λ in the regions where potentials ai are different from
0, that is in Oc

ai
. More precisely, applying a Barry Simon’s argument [20] we

prove, under certain extra conditions on ai and αi and assuming that Oai
�= ∅,

that each component ui,λ decays exponentially fast to 0 with respect to λ in
the region QT \Oai

.
In fact, Uλ decays much faster than the standard estimate (1.3). Barry

Simon’s analysis was performed to give some partial answers for the semi-
classical limit of the Schrödinger operator (−h2Δ + V ) in R

N , when V ≥ 0
is a C∞ potential bounded away from zero at infinity and has a finite num-
ber of non-degenerate zeros, multiple wells. Furthermore, he proved that the
ground states concentrate into the set of zeros of the potential V , and either
there is a rapid eigenvalue degeneracy or the limiting ground states reside
asymptotically in a single well decaying exponentially to zero away from that
well.

We have used these ideas to compute the exponentially decaying to zero
in the regions where the potentials are away from zero. From an application
point of view, the boundaries of the subdomains Oai

can be seen as potential
barriers such as in Quantum mechanics. Moreover, at the limit λ → ∞, the
solution U will be zero everywhere apart from within the subdomains Oai

,
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i.e., the solution cannot surpass those potential barriers. Furthermore, the
decay outside the subdomains Oai

goes exponentially fast to zero.
We have also obtained a similar estimation for the stationary problem.

We observe that the previous lemma can be particularised to a linear eigen-
value problem, i.e., fi,λ = σui,λ, so that we can get a decay estimate for the
eigenfunctions on the boundary of vanishing regions Oai

.
Finally, we might use our results in a future work to perform some

numerical analysis of the non-cylindrical limiting problem (P∞) that can be
approximated by means of the cylindrical problem (Pλ) for a big λ, which
is simpler to handle. The strong convergence of the solutions along with the
exponential decay shown provide us with with enough information to perform
such an analysis.

1.2. Notation

The linear cooperative system (Pλ) we are dealing with consists of two dif-
fusive equations coupled through linear terms in the domain, each of them
defined in QT = Ω×(0, T ). In this context, we will use, whenever it is possible,
matrices and vectors to simplify the notation and we will keep the subindex
i to point out i = 1, 2, but we omit this clarification in what follows, when
we focus on the components of the system.

We will use capital letters to denote vectors, while small letters to indi-
cate the two components of the vector. Thus, let U = (u1, u2)T be a vector
composed by the two scalar functions ui. We write U > 0 if u1 > 0 and
u2 > 0 in the domain of definition.

We frequently use calligraphic letters to denote matrices. In particular,
L will stand for “the laplacian matrix”

L =
(−Δ 0

0 −Δ

)

,

and Pλ might be written as

Pλ := λA − S = λ

(
a1(x, t) 0

0 a2(x, t)

)

−
(

0 α1(x, t)
α2(x, t) 0

)

; (1.6)

see (1.1). Analogously to the vectors, M > 0 (or ≥) denotes a matrix whose
entries are strictly positive (or non-negative) and we will say that M > N if
M − N > 0 (respectively <, ≤ or ≥).

As for the functional spaces, in the sake of completeness and readabil-
ity, we summarize here the main definitions that we are going to use. Let
L2(Ω) be the space L2(Ω) × L2(Ω), equipped with the usual scalar product
〈Φ,Ψ〉L2(Ω) =

∑
i〈φi, ψi〉L2(Ω) and the norm ‖Φ‖2

L2(Ω) =
∑

i ‖φi‖2
L2(Ω). If

we write Φ · Ψ to denote the Euclidean scalar product of Φ and Ψ, we can
express ‖Φ‖2

L2(Ω) and 〈Φ,Ψ〉L2(Ω) as follows:

‖Φ‖L2(Ω) = 〈Φ,Φ〉L2(Ω) =
∫

Ω

Φ · Φdx, 〈Φ,Ψ〉L2(Ω) =
∫

Ω

Φ · Ψdx.

To simplify the notation, we frequently use Φ2 = Φ · Φ. Additionally, let
DΦ be the 2 × N Jacobian matrix. We denote the Frobenius inner product
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DΦ · DΨ between the matrices DΦ and DΨ as

DΦ · DΨ = 〈DΦ,DΨ〉F = tr(DΦT DΨ)

=
2∑

i=1

n∑

j=1

∂φi

∂xj

∂ψi

∂xj
= ∇φ1 · ∇ψ1 + ∇φ2 · ∇ψ2,

so that |DΦ|2 = DΦ·DΦ. Consequently, the norm ‖DΦ‖L2(Ω) and the scalar
product 〈DΦ,DΨ〉L2(Ω) are

‖DΦ‖L2(Ω) =
∫

Ω

|DΦ|2 dx, 〈DΦ,DΨ〉L2(Ω) =
∫

Ω

DΦ · DΨ dx.

Furthermore, we define the norm and the scalar product in H1(Ω) = H1(Ω)×
H1(Ω) (see [17, Chapter 7]) through the expressions

‖Φ‖2
H1(Ω) =

∑

i

‖φi‖2
L2(Ω) + ‖∇φi‖2

L2(Ω) and 〈Φ,Ψ〉H1(Ω)

=
∑

i

〈φi, ψi〉L2(Ω) + 〈∇φi,∇ψi〉L2(Ω),

respectively. Therefore

‖Φ‖2
H1(Ω) = 〈Φ,Φ〉H1(Ω) =

∫

Ω

Φ2 + |DΦ|2 dx, 〈Φ,Ψ〉H1(Ω)

=
∫

Ω

Φ · Ψ + DΦ · DΨ dx.

2. The Stationary Problem

Let Ω ⊂ R
N be a bounded open domain and ai : Ω → R

+ ∪ {0}, bounded
non-negative measurable functions. We will focus on the stationary version
of (Pλ)

{LUλ + PλUλ = Fλ in Ω,
Uλ = 0 in ∂Ω.

(P s
λ)

If Fλ ∈ L2(Ω) is a family of pairs of functions depending on the real param-
eter λ > 0 and uniformly bounded in L2(Ω), then existence and uniqueness
of solutions Uλ ∈ H1

0(Ω) to this problem yield form Lax–Milgram theorem,
[15].

Moreover, we denote Kai
:= {x ∈ Ω; ai(x) = 0} ⊂ Ω, are two closed

sets in R
N and consider

Ωai
:= Int(Kai

) �= ∅. (2.1)

Since ai are bounded in Ω and the sets Kai
are closed in R

n, we define the
space H1

0 (Kai
) as follows, see [3]:

H1
0 (Kai

) = H1(RN ) ∩ {ui = 0 a.e. in R
N\Kai

},

and, hence, thanks to the hypothesis (2.1), we find that H1
0 (Kai

) �= {0}.
Observe that since we are considering closed sets we are working with a
functional space of the form H1

0 (A), where A is a closed subdomain of RN .
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Hence, we cannot say that H1
0 (A) = H1

0 (Int(A)), since to do so, we would
need stronger assumptions on the regularity of the set A.

Let us also consider the limit problem, which will be later discussed in
detail

{LU = F in Ω,
U = 0 in ∂Ω,

(P s
∞)

where U ∈ H1
0 (Ka1) × H1

0 (Ka2) and F ∈ L2(Ω), where F ∈ L2(Ω) is the
limit of Fλ in the weak topology of L2(Ω), when λ tends to +∞.

Finally, given V, we define the energy functional Eλ in L2(Ω) as

Eλ(V) =

⎧
⎨

⎩

∫

Ω

|DV|2 dx + λ

∫

Ω

(AV) · V dx if V ∈ H1
0(Ω),

+∞ otherwise,
(2.2)

and the limit functional E as

E(V) =

⎧
⎨

⎩

∫

Ω

|DV|2 dx if V ∈ H1
0 (Ka1) × H1

0 (Ka2),

+∞ otherwise.
(2.3)

Proposition 2.1. The solution Uλ of (P s
λ) is the unique minimiser in H1

0(Ω)
for

W �→ Iλ(W) := Eλ(W) − 2
∫

Ω

Fλ · W dx − 2
∫

Ω

(SUλ) · W dx. (2.4)

Proof. Let Uλ be the unique solution of (P s
λ) and let V be any function

belonging to H1
0(Ω). Then, Uλ −V is an admissible test function in the weak

formulation of (P s
λ), so that

0 = −
∫

Ω

|DUλ|2 dx +
∫

Ω

DUλ · DV dx − λ

∫

Ω

(AUλ) · Uλ dx

+λ

∫

Ω

(AUλ) · V dx +
∫

Ω

Fλ · (Uλ − V) dx +
∫

Ω

(SUλ) · (Uλ − V) dx.

(2.5)

Subsequently, applying the Young’s inequality, we arrive at one hand to
∫

Ω

DUλ · DV dx ≤ 1
2

∫

Ω

|DU|2 dx +
1
2

∫

Ω

|DV|2 dx (2.6)

and on the other hand to

λ

∫

Ω

(AUλ) · V dx = λ

∫

Ω

(
A 1

2 Uλ

)
·
(
A 1

2 V
)

dx ≤ λ

2

∫

Ω

(AUλ) · Uλ dx

+
λ

2

∫

Ω

(AV) · V dx, (2.7)
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where A 1
2 denotes the diagonal matrix with a

1/2
i on the diagonal. Next, using

(2.6) and (2.7) in (2.5), it yields
1
2

∫

Ω

|DUλ|2 dx +
λ

2

∫

Ω

(AUλ) · Uλ dx −
∫

Ω

Fλ · Uλ dx −
∫

Ω

(SUλ) · Uλ dx

≤ 1
2

∫

Ω

|DV|2 dx +
λ

2

∫

Ω

(AV) · V dx −
∫

Ω

Fλ · V dx −
∫

Ω

(SUλ) · V dx.

(2.8)

Thus, we can conclude that Uλ is a minimiser of (2.4).
To prove the uniqueness of the minimiser, we show that if Uλ minimises

(2.4), then it is a solution of (P s
λ). To do so, let Uλ be a minimiser of (2.4)

and take any Φ ∈ H1
0(Ω). We define jλ(b) := Iλ(Uλ + bΦ), for b ∈ R and

Uλ + bΦ ∈ H1
0(Ω), so that

jλ(b) = Eλ(Uλ + bΦ) − 2
∫

Ω

Fλ · (Uλ + bΦ) dx − 2
∫

Ω

(SUλ) · (Uλ + bΦ) dx.

The scalar function jλ(b) has a minimum at b = 0 which implies that

0 =
d(jλ(b))

db

∣
∣
∣
b=0

=
∫

Ω

DUλ · DΦdx + λ

∫

Ω

(AUλ) · Φdx

−
∫

Ω

Fλ · Φdx −
∫

Ω

(SUλ) · Φdx. (2.9)

The equality (2.9) is satisfied for any test function Φ ∈ H1
0(Ω). Therefore,

it follows that Uλ is solution of (P s
λ) and, actually, the unique minimiser of

(2.4). �

The analogous result holds for the limit problem.

Proposition 2.2. The solution U of (P s
∞) is the unique minimiser in H1

0 (Ka1)
× H1

0 (Ka2) for

W �→ I(W) := E(W) − 2
∫

Ω

F · W dx. (2.10)

Proof. Let U be the unique solution of (P s
∞) and let Y ∈ H1

0 (Ka1)×H1
0 (Ka2).

Then, U−Y is an admissible test function in the weak formulation of (P s
∞),

so that

0 = −
∫

Ω

|DU|2 dx +
∫

Ω

DU · DY dx +
∫

Ω

F · (U − Y) dx.

Note that the integration domain for each component i is Kai
due to the

geometry of the problem. Now, we apply Young’s inequality, so that
1
2

∫

Ω

|DU|2 dx −
∫

Ω

F · Udx ≤ 1
2

∫

Ω

|DY|2 dx −
∫

Ω

F · Y dx. (2.11)

Therefore, (2.11) shows that U minimises (2.10).
The proof of uniqueness follows the same scheme as the proof of Propo-

sition 2.1. We take here U as a minimiser of (2.10), Ψ any function in
H1

0 (Ka1)×H1
0 (Ka2) and define for b ∈ R and U+bΨ ∈ H1

0 (Ka1)×H1
0 (Ka2),

the function j(b) = I(U + bΨ). �
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Proposition 2.3. The solution Uλ of (P s
λ) converges strongly in H1(Ω) when

λ → +∞, to the unique solution U of (P s
∞).

Proof. The proof is based on a standard application of the Γ-convergence for
the functionals Eλ and E; see [3] for further details.

For any λ > 0, the solution Uλ of (P s
λ) is bounded in L2(Ω), since Lax–

Milgram theorem claims that Uλ ∈ H1
0(Ω). We first prove that the sequence

{Uλ}λ>0 is compact in L2(Ω). Indeed, Uλ ∈ H1
0(Ω) is an admissible test

function for the weak formulation of (P s
λ). Consequently

∫

Ω

|DUλ|2 dx + λ

∫

Ω

(AUλ) · Uλ dx =
∫

Ω

Fλ · Uλ dx +
∫

Ω

(SUλ) · Uλ dx.

Using that Uλ is bounded in L2(Ω) together with the fact that the potentials
ai are bounded measurable functions and applying Hölder’s inequality, we get

∫

Ω

|DUλ|2 dx ≤ (‖Fλ‖L2(Ω) + ‖α1 + α2‖L∞(Ω)

) ‖Uλ‖L2(Ω).

Besides, since Uλ ∈ H1
0(Ω), Poincaré’s inequality claims that see [8, Corol-

lary 9.19]

‖Uλ‖2
L2(Ω) ≤ C‖DUλ‖2

L2(Ω),

where C depends on Ω. As a result, the function Uλ is uniformly bounded
in H1

0(Ω).
Let V be any point in the L2(Ω)-adherence of the family {Uλ}λ>0. In

other words, there exists a subsequence, still denoted by Uλ, which converges
in the strong topology of L2(Ω) to V. Since Uλ is bounded in H1

0(Ω), we can
assume without loss of generality that Uλ weakly converges in H1

0(Ω) to a
function that necessarily must be V.

Next, let U ∈ H1
0 (Ka1) × H1

0 (Ka2) be the solution of the limit problem
(P s

∞). The sets Kai
are disjoint, which means that ui = 0 a.e. in Ω\Kai

. In
particular, by definition of this solution, we have that λaiui = 0 a.e. in Ω
and Eλ(U) = E(U) for every λ > 0. Recall that Uλ is the unique minimiser
in H1

0(Ω) of the functional given by Eq. (2.4). Then

Eλ(Uλ) − 2
∫

Ω

Fλ · Uλ dx − 2
∫

Ω

(SUλ) · Uλ dx ≤ Eλ(U)

−2
∫

Ω

Fλ · Udx − 2
∫

Ω

(SUλ) · Udx. (2.12)

Hence, letting λ go to infinity in the previous inequality and taking into
account Proposition 2.1, the lower semicontinuity of the functionals Eλ and E
with respect to the weak convergence, and the Γ-convergence of the sequence
Eλ to E, see [3], it follows that:

E(V) − 2

∫

Ω
F · V dx ≤ lim inf

λ

(

Eλ(Uλ) − 2

∫

Ω
Fλ · Uλ dx − 2

∫

Ω
(SUλ) · Uλ dx

)

≤ lim sup
λ

(

Eλ(Uλ) − 2

∫

Ω
Fλ · Uλ dx − 2

∫

Ω
(SUλ) · Uλ dx

)

≤ E(U) − 2

∫

Ω
F · Udx, (2.13)
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which shows that V is a minimiser and thus V = U. By uniqueness of the
adherence point, we infer that the whole sequence Uλ strongly converges in
L2(Ω) to U and weakly in H1

0(Ω).
It remains to prove the strong convergence in H1

0(Ω). To do so, it is
enough to prove

‖DUλ‖L2(Ω) → ‖DU‖L2(Ω).

The weak convergence in H1
0(Ω) implies that ‖DU‖L2(Ω) ≤ lim infλ

‖DUλ‖L2(Ω). Therefore, (2.13) confirms that ‖DU‖L2(Ω) ≥ lim supλ

‖DUλ‖L2(Ω). Finally, the convergence of the whole sequence comes from
uniqueness of the adherence point in L2(Ω). �

As a consequence of Proposition 2.3, we easily obtain the following re-
sult.

Proposition 2.4. Assume that Fλ converges to F weakly in L2(Ω) and let Uλ

be the solution of the problem (P s
λ). Then, when λ → ∞

λ

∫

Ω

(AUλ) · Uλ dx → 0. (2.14)

Moreover, the convergence of λAUλ holds in the ∗-weak topology of H−1(Ω) :=
H−1(Ω) × H1(Ω).

Proof. Due to Proposition 2.3, we know that Uλ strongly converges in H1
0(Ω)

to U, solution of (P s
∞). Furthermore, Fλ weakly converges in L2(Ω) to a

function F ∈ L2(Ω). In particular
∫

Ω

|DUλ|2 dx →
∫

Ω

|DU|2 dx =
∫

Ω

F · Udx,

∫

Ω

Fλ · Uλ dx →
∫

Ω

F · Udx.

Now, passing to the limit, as λ tends to infinity, in the expression
∫

Ω

|DUλ|2 dx + λ

∫

Ω

(AUλ) · Uλ dx =
∫

Ω

Fλ · Uλ dx +
∫

Ω

(SUλ) · Uλ dx,

implies that
∫

Ω

(SU) · Udx = 0,

since U ∈ H1
0 (Ka1) × H1

0 (Ka2). Thus, we obtain (2.14).
Next, let Uλ be solution of (P s

λ) and Φ ∈ H1
0(Ω) a test function. Once

we integrate by parts in Ω we arrive at
∫

Ω

Uλ · (LΦ) dx + λ

∫

Ω

(AUλ) · Φdx =
∫

Ω

Fλ · Φdx +
∫

Ω

(SUλ) · Uλ dx.

For each Φ that satisfies ‖Φ‖H1(Ω) ≤ 1, we find
∣
∣
∣
∣λ

∫

Ω

(AUλ) · Φdx

∣
∣
∣
∣ ≤ ‖Fλ‖L2(Ω) + ‖DUλ‖L2(Ω)

+‖α1 + α2‖L∞(Ω)‖Uλ‖L2(Ω) ≤ C.
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Taking the supremum in Φ, we get
∣
∣
∣
∣λ

∫

Ω

(AUλ) · Φdx

∣
∣
∣
∣ ≤ C. (2.15)

Therefore, the sequence λAUλ is weakly-∗ sequentially compact in H−1(Ω)
and we obtain the convergence by uniqueness of the limit in the distributional
sense. �

Remark 2.1. The estimation (2.15) will be improved in Sect. 6 performing
an analysis which shows an exponential decay to zero of the solutions in the
regions where the potentials are strictly positive. These results are mainly
based on an argument performed by Barry Simon [20] in obtaining the semi-
classical limit for an elliptic eigenvalue problem with potentials vanishing in
multiple wells.

3. Existence and Regularity of the Solutions of Problem (Pλ)

In this very short section, we state the theorem that ensures existence and
uniqueness of weak solution Uλ of problem (Pλ). The proof is based on the
well-known Galerkin method, which is rather standard for scalar problems,
see [15], and easy to adapt to vector problems. Therefore, we give here just
some details of how the proof would be.

Theorem 3.1. There exists a unique (weak) solution, Uλ ∈ H1
0(QT ) of prob-

lem (Pλ).

To apply Galerkin’s method to get the existence of solutions, one might
first construct solutions Uλ,m(t), with ui,λ,m ∈ L2(0, T,H1

0 (Ω)) of certain
finite-dimensional approximations to (Pλ) and, then, we pass to the limit. To
do so, consider vector Wk := (w1,k, w2,k)T , with k ∈ N, so that wi,k only
depend on x and where {Wk}∞

k=1 stands for an orthogonal basis in H1
0(Ω) and

an orthonormal basis in L2(Ω), such that ui,λ,m(t) :=
∑m

k=1 di,k,m(t)wi,k. In
particular, we take {Wk}∞

k=1 the complete set of normalised eigenfunctions
of L, under the decomposition (1.6) in H1

0(Ω). Actually, by the definition of
the operator L, we have pairs of eigenfunctions for each component of the
operator −Δ in Ω with homogeneous Dirichlet boundary conditions.

The following remarks will play an important role in the subsequent
analysis.

Remark 3.1. (Theorem 3, Chapter 5.9, [15]). If U ∈ H1
0(QT ) and ∂tU ∈

H−1(QT ) := L2(0, T,H−1
0 (Ω)) × L2(0, T,H−1

0 (Ω)), then

U ∈ C([0, T ], L2(Ω)) × C([0, T ], L2(Ω)),

after possibly being redefined on a set of measure zero. Moreover, the mapping
t �→ ‖U(t)‖2

L2(Ω) is absolutely continuous and

d
dt

‖U(t)‖2
L2(Ω) = 2〈∂tU(t),U(t)〉L2(Ω).
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Remark 3.2. (Improved regularity, [15]). Let U0,λ ∈ H2(Ω) := H2(Ω) ×
H2(Ω), ∂tFλ ∈ L2(QT ) and let Uλ be the weak solution of (Pλ). Then

Uλ ∈ L∞(0, T ; H2(Ω)) × L∞(0, T ; H2(Ω)),

∂tUλ ∈ L∞(0, T ; L2(Ω)) ∩ L2(0, T, H1
0 (Ω)) × L∞(0, T ; L2(Ω)) ∩ L2(0, T, H1

0 (Ω)),

∂2
t Uλ ∈ H−1(QT ).

4. Uniqueness of the Solution of the Limiting Problem

We study in this section the uniqueness of solutions to the problem that
emerges as the limit of (Pλ) when λ tends to infinity. In Sect. 5.2, we prove
the existence of the solution as the limit of the solutions of (Pλ).

To this aim, let Φ ∈ H1
0(QT ) be a test function and consider the weak

formulation of (Pλ)
∫

QT

(∂tU · Φ + DU · DΦ + λ(AU) · Φ − (SU) · Φ) dxdt =
∫

QT

F · Φdxdt;

we get the limit problem for this equation, at least formally, by noting that,
as λ → ∞, thanks to (1.3), the solution concentrates in the regions where
ai vanish, and is equal to zero everywhere else, so that the term λ(AU) · Φ
disappears. Hence, since in the limit ui = φi = 0 a.e. in QT \Oai

and due to
the geometrical structure (1.2), we get that

∫

QT
(SU) · Φ dxdt cancels out.

Therefore, we consider
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∫

QT

(∂tU · Φ + DU · DΦ) dxdt =
∫

QT

F · Φdxdt,

ui = φi = 0 a.e. in QT \Oai

U(x, 0) = U0 ∈ H1
0(Ω).

(P∞)

which will turn out to be, as we will see in the next section, the limit problem
of (Pλ).

Observe that Remark 3.1 establishes that solution U of (P∞) is contin-
uous in time. Therefore, the initial condition U0(x) makes sense in L2(Ω).
Moreover, Galerkin’s method provides us with the following regularity of the
solutions for F ∈ L2(QT ) and U0 =∈ H1

0(Ω):

U ∈ H1(QT ), ∂tU ∈ H−1(QT ).

Proposition 4.1. Let U be a solution of (P∞). Then

1
4

sup
t∈(0,T )

‖U(t)‖2
L2(Ω) + ‖DU‖2

L2(QT ) ≤ 1
2
‖U0‖2

L2(Ω) + T‖F‖2
L2(QT ). (4.1)

Proof. Let U be a solution of (P∞), and s ∈ (0, T ). Define QS = Ω × (0, s).
Choose Φ = U1[0,s], where 1[0,s] is the characteristic function of (0, s), as
test function in (P∞)

∫

QS

∂tU · Udxdt +
∫

QS

|DU|2 dxdt =
∫

QS

F · Udxdt.
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Thanks to Remark 3.1 and taking into account the regularity of U and ∂tU,
it follows that t �→ ‖U(t)‖2

L2(Ω) is absolutely continuous and hence:

d
dt

‖U(t)‖2
L2(Ω) = 2〈∂tU(t),U(t)〉L2(Ω),

for a.e. 0 ≤ t ≤ T . Therefore, we get

1
2
‖U(s)‖L2(Ω) − 1

2
‖U(0)‖L2(Ω) +

∫

QS

|DU|dxdt =
∫

QS

F · Udxdt.

Moreover, Young’s inequality and the Integral Mean Value Theorem imply
that

∣
∣
∣
∣

∫

QS

F · Udxdt

∣
∣
∣
∣ ≤ k

2
‖F‖2

L2(QS) +
1
2k

∫

QS

U2 dxdt

≤ k

2
‖F‖2

L2(QS) +
T

2k
sup

t∈(0,T )

‖U‖2
L2(Ω).

Indeed, if we set k = 2T

1
2
‖U(s)‖2

L2(Ω) +
∫

QS

|DU|2 dxdt ≤ 1
2‖U0‖2

L2(Ω) + T‖F‖2
L2(QS)

+ 1
4 supt∈(0,T ) ‖U(t)‖2

L2(Ω).

The previous calculations are true for every s ∈ (0, T ). Thus, taking the
supremum in s ∈ (0, T ), we get (4.1). �

Corollary 4.2. There exists at most a unique solution U of (P∞).

Proof. Assume that U1 and U2 are two different solutions of (P∞) and define
Y := U1 − U2. Then, Y is also a solution of (P∞) with F = 0 and U0 = 0.
Consequently, if we insert Y into Eq. (4.1) turns out that Y = 0, which
implies the uniqueness of the solution of (P∞). �

5. Asymptotic Behaviour as λ Goes to Infinity

5.1. Energy Bounds

The convergence of Uλ to U, solution of (P∞), comes from a series of uniform
energy estimates in λ for Uλ and ∂tUλ. In particular, if we use Uλ as a test
function in the weak formulation of (Pλ), we obtain a bound that guarantees
that ui = 0 a.e. in Oai

.
On the other hand, ∂tUλ belongs to H1

0(QT ) if U0,λ ∈ H2(Ω) and
∂tFλ ∈ L2(QT ), according to Remark 3.2. Under these assumptions, we can
use ∂tUλ as a test function in the weak formulation of (Pλ) to find a bound
which claims that ‖∂tUλ‖L2(QT ) ≤ C if we assume that the potentials ai are
time decreasing and satisfy the following condition:

sup
λ

(

λ

∫

Ω

(A(x, 0)U0,λ) · U0,λ dx

)

< ∞,

where U0,λ is a bounded sequence in H1
0(Ω).
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Lemma 5.1. Let Uλ be the weak solution of problem (Pλ) with U0,λ ∈ H1
0(Ω)

the initial condition and Fλ ∈ L2(QT ). Then

1

4
sup

t∈(0,T )
‖Uλ(t)‖2

L2(Ω) + ‖DUλ‖2
L2(QT ) + λ

∫

QT

(AλUλ) · Uλ dx dt

≤ 1

2
‖U0,λ‖2

L2(Ω) + T‖Fλ‖2
L2(QT ) + sup

QT

{‖α1‖L∞(QT ), ‖α2‖L∞(QT )}‖Uλ‖L2(QT ),

(5.1)

where L∞(QT ) = L∞(0, T, L∞(Ω)).

Proof. Let Uλ be the solution of (Pλ) and s ∈ (0, T ) and let Φ = Uλ1[0,s]

be a test function. Then, the weak formulation of (Pλ) yields

1

2
‖Uλ(s)‖2

L2(Ω) − 1

2
‖Uλ(0)‖2

L2(Ω) +

∫

QS

|DUλ|2 dx dt + λ

∫

QT

(AUλ) · Uλ dx dt

=

∫

QS

Fλ · Uλ dx dt +

∫

QT

(SUλ) · Uλ dx dt.

Repeating the same procedure as in the proof of Proposition 4.1, and knowing
that all coefficients α1 and α2 are uniformly bounded, once we apply Hölder’s
inequality, we obtain equation (5.1), so we omit the details. �

Next, we want to find an uniform bound for ‖∂tUλ‖L2(QT ). To this aim,
we must assume a time monotonicity condition for the potentials ai.

Definition 5.2. We say that the functions ai : QT → R
+ ∪ {0} satisfy a time

decay condition in QT if they are Lipschitz and

∂tai(x, t) ≤ 0, a.e. in (x, t) ∈ QT . (5.2)

Lemma 5.3. Let the potentials ai satisfy a time decay condition in QT , U0,λ ∈
H2(Ω) and ∂tFλ ∈ L2(QT ). Then, the solution Uλ of (Pλ) satisfies

(1 − ε)
∫

QT

(∂tUλ)2 dxdt + sup
s∈(0,T )

(∫

Ω

|DUλ(s)|2 dx

)

≤
∫

QT

F2
λ dxdt +

∫

Ω

|DU0,λ|2 dx +
ξ

2ε
‖Uλ‖2

L2(QT )

+λ

∫

Ω

(A(x, 0)Uλ(0)) · Uλ(0) dx, (5.3)

for ε > 0 sufficiently small and ξ = maxQT
{‖α1‖L∞(QT ), ‖α2‖L∞(QT )}.

Proof. Remark 3.2 implies that ∂tUλ ∈ H1
0(Ω). Thus, for each s ∈ (0, T ),

Φ = ∂tUλ 1[0,s] is an admissible test function in the weak formulation of
(Pλ). In fact, we get

∫

QS

(∂tUλ)2 dxdt +
∫

QS

DUλ · D(∂tUλ) dxdt

+
∫

QS

(PλUλ) · ∂tUλ dxdt =
∫

QS

Fλ · ∂tUλ dxdt. (5.4)
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Moreover, since ∇ui,λ ∈ L2(0, T,H1(Ω)) and ∇(∂tui,λ) ∈ L2(0, T, L2(Ω)),
thanks to Remark 3.1 and Fubini’s theorem

∫

QS

DUλ · D(∂tUλ) dxdt =
1
2

∫ s

0

d
dt

(∫

Ω

|DUλ|2 dx

)

dt,

and

λ

∫

QS

(AUλ) · ∂tUλ dxdt = λ

∫ s

0

(
d
dt

(
1
2

∫

Ω

(AUλ) · Uλ dx

)

−1
2

∫

Ω

(A′Uλ) · Uλ dx

)

dt,

such that

A′ =
(

a′
1 0
0 a′

2

)

, a′
i =

∂ai(x, t)
∂t

.

If we substitute the above expressions into (5.4), we arrive at
∫

QS

(∂tUλ)2 dxdt +
1
2

∫

Ω

|DUλ(s)|2 dx +
λ

2

∫

Ω

(A(x, s)Uλ(s)) · Uλ(s) dx

− λ

2

∫

QS

(A′Uλ) · Uλ dxdt

=
∫

QS

Fλ · ∂tUλ dxdt +
∫

QS

(SUλ) · ∂tUλ dxdt +
1
2

∫

Ω

|DUλ(0)|2 dx

+
λ

2

∫

Ω

(A(x, 0)Uλ(0)) · Uλ(0) dx.

Applying Young’s inequality, it yields
∫

QS

Fλ · ∂tUλ dxdt ≤ 1
2

∫

QS

F2
λ dxdt +

1
2

∫

QS

(∂tUλ)2 dxdt,

and
∫

QS

(SUλ) · ∂tUλ dxdt ≤ 1
2ε

∫

QS

(SUλ)2 dxdt +
ε

2

∫

QS

(∂tUλ)2 dxdt,

for a sufficiently small ε > 0. Therefore, we have

(1 − ε)
∫

QS

(∂tUλ)2 dxdt +
∫

Ω

|DUλ(s)|2 dx + λ

∫

Ω

(A(x, s)Uλ(s)) · Uλ(s) dx

− λ

∫

QS

(A′Uλ) · Uλ dxdt

≤
∫

QS

F2
λ dxdt +

1
ε

∫

QS

[(α1u2,λ)2 + (α2u1,λ)2] dxdt +
∫

Ω

|DUλ(0)|2 dx

+ λ

∫

Ω

(A(x, 0)Uλ(0)) · Uλ(0) dx.

Finally, using Definition 5.2, we conclude that

(1 − ε)
∫

QS

(∂tUλ)2 dxdt +
∫

Ω

|DUλ(s)|2 dx
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≤
∫

QS

F2
λ dxdt +

1
ε

∫

QS

(SUλ)2 dxdt +
∫

Ω

|DU0,λ|2 dx

+ λ

∫

Ω

(A(x, 0)Uλ(0)) · Uλ(0) dx.

Taking the supremum in s and applying Hölder’s inequality we arrive at (5.3).
�

5.2. Convergence of Weak Solutions

Using the previous estimation results, we prove the weak convergence of Uλ

to U, solution of problem (P∞), under the assumption that ai satisfy a time
decay condition in QT and imposing certain additional conditions.

Let Fλ be a bounded sequence in L2(QT ), U0,λ a bounded sequence in
H1

0(Ω), and suppose that ∂tFλ ∈ L2(QT ), U0,λ ∈ H2(Ω). Moreover, assume
that Fλ weakly converges to F in L2(QT ) and U0,λ weakly converges to
U0 ∈ H1

0(Ω), at least for a subsequence.

Proposition 5.4. Suppose that potentials ai satisfy a time decay condition in
QT and that

sup
λ

(

λ

∫

Ω

(A(x, 0)U0,λ) · U0,λ dx

)

< ∞. (5.5)

Furthermore, let Uλ be a solution of problem (Pλ). Then, when λ tends to
infinity, Uλ weakly converges in H1

0(QT ) to U, the unique solution of prob-
lem (P∞).

Proof. Due to Lemma 5.1, we know that Uλ is uniformly bounded in H1
0(QT ).

Consequently, it weakly converges in H1
0(QT ) to a function U ∈ H1

0(QT ).
Simultaneously, ∇ui,λ weakly converges to ∇ui in L2(0, T, L2(Ω)). Assuming
the time decay of ai (5.2), and since U0,λ ∈ H2(Ω) and ∂tFλ ∈ L2(QT ),
thanks to Lemma 5.3 and Eq. (5.5), we arrive at ‖∂tUλ‖L2(QT ) ≤ C. Thus,
∂tUλ weakly converges in L2(QT ) to some limit W ∈ L2(QT ), which must
be equal to ∂tU by uniqueness of the limit in the distributional sense. This
proves that ∂tU ∈ L2(QT ).

Additionally, due to (5.1), we find that

sup
λ

(

λ

∫

QT

(AUλ) · Uλ dxdt

)

≤ C,

which implies that, in the limit, ui must be equal to zero a.e. in any set of
the form {ai > ε} with ε > 0. Indeed, for the union of sets, such that n ∈ N

with ε = 1/n, we obtain that ui = 0 a.e. in QT \Oai
. Besides, U satisfies the

system (P∞) in the weak sense. Hence, let Φ be a test function in H1
0(QT ),

such that φi = 0 a.e. in QT \Oai
. The election of Φ and the fact that Uλ is

a solution of (Pλ) implies
∫

QT

∂tUλ · Φdxdt +
∫

QT

DUλ · DΦdxdt

−
∫

QT

(SUλ) · Φdxdt =
∫

QT

Fλ · Φdxdt. (5.6)
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Next, passing to the limit in the weak sense, we arrive at
∫

QT

∂tU · Φdxdt +
∫

QT

DU · DΦdxdt =
∫

QT

F · Φdxdt. (5.7)

Also, we observe that
∫

QT

(SU) · Φdxdt = 0,

since
∫

QT
α1u2φ1 dxdt = 0 and

∫

QT
α2u1φ2 dxdt = 0. Each term ui,λ mainly

lives in Oai
. Consequently, the coupling terms vanish as the value of λ in-

creases.
It remains to show that U is a solution of (P∞). For that purpose, we

prove that U(x, 0) = U0(x) a.e. in x ∈ Ω. Then, let Φ ∈ H1(QT ) be any
function that satisfies Φ(T ) = (0, 0)T . Then, considering Uλ(0) = U0,λ in
the weak formulation of (Pλ), and integrating by parts, we get

−
∫

Ω

U0,λ · Φ(0) dx −
∫

QT

Uλ · ∂tΦdxdt +
∫

QT

DUλ · DΦdxdt

=
∫

QT

Fλ · Φdxdt +
∫

QT

(SUλ) · Φdxdt.

Passing to the limit as λ tends to infinity and due to the weak convergence
of U0,λ to U0, we get

−
∫

Ω

U0 · Φ(0) dx −
∫

QT

U · ∂tΦdxdt

+
∫

QT

DU · DΦdxdt =
∫

QT

F · Φdxdt. (5.8)

Now, integrating by parts again, we can conclude that

−
∫

Ω

U(0) · Φ(0) dx −
∫

QT

U · ∂tΦdxdt

+
∫

QT

DU · DΦdxdt =
∫

QT

F · Φdxdt. (5.9)

Comparing Eqs. (5.8) and (5.9), we find that
∫

Ω

U0 · Φ(0) dx =
∫

Ω

U(0) · Φ(0) dx;

due to the fact that Φ(0) is arbitrary, we deduce that U(0) = U0 in L2(Ω).
Finally, the convergence of Uλ to U in H1

0(QT ) is satisfied a priori
for some convergent subsequence. However, by uniqueness of the solution of
problem (P∞), see Proposition 4.1, the convergence is fulfilled for the whole
sequence. �
Corollary 5.5. Let Oai

⊂ QT be time increasing open sets, such that po-
tentials ai satisfy a time decay condition in QT and let ∂tFλ ∈ L2(QT ),
U0,λ ∈ H2(Ω). Then, there exists a unique solution for the problem (P∞).

Proof. It is sufficient to apply Proposition 5.4 with the following potentials
ai(x, t) given by dist

(
(x, t), Oai

)
, and such that Fλ = F, U0,λ = U0. �
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5.3. Strong Convergence in H1
0(QT )

We use a similar argument to the one introduced in Sect. 2 to prove the
strong convergence of the solutions Uλ of problem (Pλ) to the solution U of
problem (P∞), when the parameter λ goes to infinity.

Theorem 5.6. Let Uλ the solution of (Pλ). Under the same hypothesis as
in Proposition 5.4, Uλ converges in the strong topology of H1

0(QT ) to U,
solution of the problem (P∞).

Proof. Lemma 5.1 shows that sequence {Uλ} is bounded in H1
0(QT ). On the

other hand, Proposition 5.4 shows that Uλ weakly converges in H1
0(QT ) to

U, the unique solution of (P∞). Moreover, the lower semicontinuity of the
norm respect to the weak convergence implies

‖U‖H1
0(QT ) ≤ lim

λ→∞
inf ‖Uλ‖H1

0(QT ). (5.10)

Thus, to obtain the strong convergence, we only have to prove the inequality
involving the limit-sup. To do so observe that, for a.e. fixed t, Uλ solves
LUλ + λAUλ = Fλ + SUλ − ∂tUλ, such that Uλ is a minimiser in H1

0(Ω)
for the energy, that is

W �→ Eλ(W) − 2
∫

Ω

Fλ · W dx − 2
∫

Ω

(SUλ) · W dx + 2
∫

Ω

∂tUλ · W dx,

where Eλ is defined by (2.2). Furthermore, in Proposition 5.4 we obtained
that

∂tUλ ⇀ ∂tU weakly in L2(QT ).

Now, since ‖DUλ‖L2(QT ) ≤ Eλ(Uλ) for a.e. fixed t, we get
∫

Ω

|DUλ|2 dx − 2
∫

Ω

(Fλ − ∂tUλ) · Uλ dx − 2
∫

Ω

(SUλ) · Uλ dx

≤ Eλ(Uλ) − 2
∫

Ω

(Fλ − ∂tUλ) · Uλ dx − 2
∫

Ω

(SUλ) · Uλ dx

≤ Eλ(U) − 2
∫

Ω

(Fλ − ∂tUλ) · Udx

=
∫

Ω

|DU|2 dx − 2
∫

Ω

(Fλ − ∂tUλ) · Udx. (5.11)

Now, we integrate in t ∈ [0, T ] and consider the following: estimations
∫

QT

(Fλ − ∂tUλ) · Uλ dxdt ⇀

∫

QT

(F − ∂tU) · Udxdt,

∫

QT

(SUλ) · Uλ dxdt ⇀ 0. (5.12)

Finally, calculating the limit-sup when λ goes to infinity in (5.11) and using
(5.12), we find that

‖DU‖L2(QT ) ≥ lim
λ

sup ‖DUλ‖L2(QT ). (5.13)

We know that every sequence Uλ converges to U, solution of problem (P∞),
in the strong topology of L2(QT ), due to the fact that Uλ is bounded in
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H1
0(QT ) and the uniqueness of the solution of (P∞). Thanks to inequalities

(5.10), (5.13) and of the previous property, we conclude that every sequence
Uλ converges in the strong topology of H1

0(QT ) to U. �

6. Simon Exponential Estimate

6.1. Stationary Case

As part of his Semiclassical works, Barry Simon, see [20, Theorem 4.1], estab-
lished a strong convergence of the solutions for a class of Shrödinger operators
of the form (−h2Δ + V ) in R

N , where V ≥ 0 is a C∞ potential bounded
away from zero at infinity and having a finite number of non-degenerate zeros,
multiple wells. In particular, it shows how the solutions for these operators
decay exponentially as the so-called Planck’s constant h goes to zero in the
regions where the potential is away from zero.

Following similar ideas, we obtain a very particular strong convergence
of Uλ, as stationary solutions of problem (P s

λ) far from the set Ωa1 ∪ Ωa2 ,
see (2.1). To this aim, let ε > 0 be fixed and define Ωε,ai

:= {x ∈ Ω; dist(x,Ωai
)

> ε}, and

δ := min(δa1 , δa2) with δai
:= min

x∈Ωε,ai

ai(x) > 0. (6.1)

Define also H = (η1, η2)T , where ηi : Ω → R satisfies ηi ∈ W 2,∞(Ω) and is
equal to 1 in Ω2ε,ai

and equal to 0 outside Ωε,ai
. In the setting of Sect. 2, we

prove the following estimate.

Lemma 6.1. Let Uλ the unique weak solution in H1
0(Ω) of the problem (P s

λ).
There exists a constant C > 0, such that for every λ > 0

∫

Ωε,ai

e2
√

λ δ
2 min(dist(x,Ωc

2ε,a1
),dist(x,Ωc

2ε,a2
))η2

i ui,λ

(
λδ

2
ui,λ − fi,λ − αiûi,λ

)

dx ≤ C,

where û1,λ := u2,λ, û2,λ := u1,λ, and C = C(‖∇ηi‖L∞(Ω), ‖Δηi‖L∞(Ω), ε).

Proof. Let ε > 0 be fixed. For any function Ψ ∈ H1
0 (Ωε,a1) × H1

0 (Ωε,a2) and
any Lipschitz function ρ that satisfies |∇ρ|2 ≤ δ/2, we can calculate

∫

Ω

∇(e
√

λρψi) · ∇(e−√
λρψi) dx

=
∫

Ω

(√
λe

√
λρψi∇ρ + e

√
λρ∇ψi

)
·
(
−

√
λe−√

λρψi∇ρ + e−√
λρ∇ψi

)
dx

=
∫

Ω

(−λψ2
i |∇ρ|2 + |∇ψi|2

)
dx,

which impies
∫

Ω

(
∇(e

√
λρψi) · ∇(e−√

λρψi) + λaiψ
2
i

)
dx

≥
∫

Ω

λ
(
ai − |∇ρ|2)ψ2

i dx ≥ λδ

2

∫

Ω

ψ2
i dx,

(6.2)
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due to the definition of δ, see (6.1). If we choose Ψ = e
√

λρH · Uλ, the next
computation holds

∇(e2
√

λρη2
i ui,λ) · ∇ui,λ = [∇(e2

√
λρηiui,λ) + e2

√
λρui,λ∇ηi] · ηi∇ui,λ

= ∇(e2
√

λρηiui,λ) · (∇(ηiui,λ) − ui,λ∇ηi)

+ e2
√

λρui,ληi∇ηi · ∇ui,λ.

Since we have that ∇ηi = 0 in Ω2ε,ai
and in Ωc

ε,ai
, we arrive at the following

expression on the left-hand side of inequality (6.2):
∫

Ω

(
∇(e

√
λρψi) · ∇(e−√

λρψi) + λaiψ
2
i

)
dx

=
∫

Ωε,ai

(
∇(e2

√
λρηiui,λ) · ∇(ηiui,λ) + λaie

2
√

λρη2
i u2

i,λ

)
dx

=
∫

Ωε,ai

(
∇(e2

√
λρη2

i ui,λ) · ∇ui,λ + λaie
2
√

λρη2
i u2

i,λ

)
dx

−
∫

Ωε,ai
\Ω2ε,ai

e2
√

λρui,ληi∇ηi · ∇ui,λ dx

+
∫

Ωε,ai
\Ω2ε,ai

∇(e2
√

λρηiui,λ) · ui,λ∇ηi dx.

(6.3)

Thus, e2
√

λρη2
i ui,λ ∈ H1

0 (Ωε,ai
) provides us with an admissible test function

for problem (P s
λ) and we find that

∫

Ωε,ai

(
∇(e2

√
λρη2

i ui,λ) · ∇ui,λ + λaie
2
√

λρη2
i u2

i,λ − αie
2
√

λρη2
i ui,λûi,λ

)
dx

=
∫

Ωε,ai

e2
√

λρη2
i ui,λfi,λ dx,

(6.4)

where û1,λ ≡ u2,λ, û2,λ ≡ u1,λ. Moreover, Proposition 2.3 implies

‖Uλ‖L2(Ω) + ‖DUλ‖L2(Ω) ≤ C‖Fλ‖L2(Ω),

for a constant C. In addition, Hölder’s inequality allows us to obtain
∣
∣
∣
∣
∣

∫

Ωε,ai
\Ω2ε,ai

e2
√

λρui,ληi∇ηi · ∇ui,λ dx

∣
∣
∣
∣
∣
≤ C‖∇ηi‖L∞(Ω)‖fi,λ‖2

L2(Ω)e
2
√

λmi ,

(6.5)

where mi is defined by

mi := sup
x∈Ωε,ai

\Ω2ε,ai

ρ(x).

Due to the fact that ui,λ∇ηi ∈ H1
0 (Ωε,ai

\Ω2ε,ai
) and ηi ∈ W 2,∞(Ω), we can

integrate by parts the following term of (6.3) and get:
∫

Ωε,ai
\Ω2ε,ai

∇(e2
√

λρηiui,λ) · (ui,λ∇ηi) dx = −
∫

Ωε,ai
\Ω2ε,ai

e2
√

λρηiui,λ(ui,λΔηi

+ ∇ui,λ · ∇ηi) dx.
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Consequently

∣
∣
∣
∣
∣

∫

Ωε,ai
\Ω2ε,ai

∇(e2
√

λρηiui,λ) · (ui,λ∇ηi) dx

∣
∣
∣
∣
∣
≤ C(‖∇ηi‖L∞(Ω)

+ ‖Δηi‖L∞(Ω))‖fi,λ‖2
L2(Ω)e

2
√

λmi .

(6.6)

Combining the estimations (6.3), (6.4), (6.5), and (6.6) with (6.2), we arrive
at

λδ

2

∫

Ωε,ai

e2
√

λρη2
i u2

i,λ dx ≤
∫

Ωε,ai

e2
√

λρη2
i ui,λfi,λ dx

+
∫

Ωε,ai

αie
2
√

λρη2
i ui,λûi,λ dx + Ce2

√
λmi ,

(6.7)

where C = C(‖∇ηi‖L∞(Ω), ‖Δηi‖L∞(Ω), ε). In particular, we specify the func-
tion ρ by setting

ρ(x) :=

√
δ

2
min

(
dist(x,Ωc

2ε,a1
),dist(x,Ωc

2ε,a2
)
)
,

which satisfies all our needed assumptions (ρ is Lipschitz, |∇ρ|2 ≤ δ/2 and
ρ = 0 outside Ωε,a1 ∪Ωε,a2). In this case, mi = 0 which implies that Eq. (6.7)
becomes

λδ

2

∫

Ωε,ai

e2
√

λρη2
i u2

i,λ dx ≤
∫

Ωε,ai

e2
√

λρη2
i ui,λfi,λ dx

+
∫

Ωε,ai

αie
2
√

λρη2
i ui,λûi,λ dx + C,

or equivalently
∫

Ωε,ai

e2
√

λρη2
i ui,λ

(
λδ

2
ui,λ − fi,λ − αiûi,λ

)

dx ≤ C,

which completes the proof. �

Remark 6.1. We can use the previous lemma when fi = 0 in Ω\Ωai
. Thus,

the convergence ratio Uλ → 0 when λ → ∞ far from Ωa1 ∪ Ωa2 is
∫

Ω2ε,ai

e2
√

λ δ
2 min(dist(x,Ωc

2ε,a1
),dist(x,Ωc

2ε,a2
))ui,λ

(
λδ

2
ui,λ − αiûi,λ

)

dx ≤ C.

This result considerately improves the previously mentioned estimation

λ

∫

Ω

(AUλ) · Uλ dx ≤ C.
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6.2. Parabolic Case

We extend the previous bound corresponding to the stationary case for the
parabolic case. To this aim, similarly as before, for each ε > 0, we define

δai
:= min

(x,t)∈Aε,ai

ai(x, t) > 0, δ = min(δa1 , δa2). (6.8)

with Aε,ai
:=

{
(x, t) ∈ QT ; dist

(
(x, t), Oai

)
> ε

}
. We also consider the func-

tion H = (η1, η2)T , ηi : QT → R, such that ηi ∈ W 2,∞(QT ), is equal to 1 in
A2ε,ai

and equal to 0 outside Aε,ai
.

Lemma 6.2. Let Uλ be the solution of problem (Pλ) with initial data U0,λ ∈
H1

0 (Oa1 ∩ {t = 0}) × H1
0 (Oa2 ∩ {t = 0}).

Then, for each λ ≥ 4, there exists a constant C > 0, such that
∫

Aε,ai

e2
√

λcδ min(dist((x,t),Ac
2ε,a1

),dist((x,t),Ac
2ε,a2

))η2
i ui,λ

(
λδ

4
ui,λ − fi,λ − αiûi,λ

)

dxdt ≤ C,

where û1,λ := u2,λ, û2,λ := u1,λ, cδ := min
(√

δ
2 , δ

2

)

, and the constant C

depends on ε, ‖∇ηi‖L∞(QT ), ‖Δηi‖L∞(QT ) and ‖∂tηi‖L∞(QT ).

Proof. Let ε > 0 be a fixed value. Consider any function Ψ ∈ H1(QT ) that
satisfies ψi = 0 a.e. in Ac

ε,ai
and any Lipschitz function ρ : QT → R that

fulfils

max
(|∂tρ|, |∇ρ|2) ≤ δ/2. (6.9)

Integrating in time the estimate (6.2) and using the definition of δ given by
(6.8), we obtain

∫

QT

(
∇(e

√
λρψi) · ∇(e−√

λρψi) + λaiψ
2
i

)
dxdt ≥ λδ

2

∫

QT

ψ2
i dxdt.(6.10)

We focus now on the time derivative and use estimate (6.9) to get the fol-
lowing expression:
∫

QT

e
√

λρψi ∂t(e−√
λρψi) dxdt = −

√
λ

∫

QT

ψ2
i ∂tρdxdt +

∫

QT

ψi ∂tψi dxdt

= −
√

λ

∫

QT

ψ2
i ∂tρdxdt

+
1
2

(∫

Ω

ψi(T )2 dx −
∫

Ω

ψi(0)2 dx

)

≥ −
√

λδ

2

∫

QT

ψ2
i dxdt − 1

2

∫

Ω

ψi(0)2 dx.

(6.11)
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Estimates (6.10), (6.11) allow us to obtain
∫

QT

(
e

√
λρψi

(
∂t(e

−√
λρψi) + λaie

−√
λρψi

)
+ ∇(e

√
λρψi) · ∇(e−√

λρψi)
)

dx dt

≥ δ

2
(λ −

√
λ)

∫

QT

ψ2
i dx dt − 1

2

∫

Ω

ψi(0)2 dx. (6.12)

Moreover, choose ψ = e
√

λρH ·Uλ. Assume also that λ ≥ 4, so that λ−√
λ ≥

λ/2 is accomplished. Since U0,λ ∈ H1
0 (Oa1 ∩{t = 0})×H1

0 (Oa2 ∩{t = 0}), we
have that ‖ψi(0)‖L2(Ω) = 0. Hence, we can rewrite equation (6.12) as follows:

λδ

4

∫

Aε,ai

e2
√

λρη2
i u2

i,λ dxdt

≤
∫

Aε,ai

(
∇(e2

√
λρηiui,λ) · ∇(ηiui,λ) + λaie

2
√

λρη2
i u2

i,λ

+e2
√

λρηiui,λ∂t(ηiui,λ)
)

dxdt. (6.13)

Proceeding analogously as in the stationary case
∫

Aε,ai

(
∇(e2

√
λρηiui,λ) · ∇(ηiui,λ) + λaie

2
√

λρη2
i u2

i,λ

)
dxdt

=
∫

Aε,ai

(
∇(e2

√
λρη2

i ui,λ) · ∇ui,λ + λaie
2
√

λρη2
i u2

i,λ

)
dxdt

−
∫

Aε,ai
\A2ε,ai

e2
√

λρui,ληi∇ηi · ∇ui,λ dxdt

+
∫

Aε,ai
\A2ε,ai

∇(e2
√

λρηiui,λ) · ui,λ∇ηi dxdt.

We recall that according to bound (5.1), there exists a constant C > 0, such
that

‖Uλ‖H1(QT ) ≤ C(‖Fλ‖L2(QT ) + ‖U0,λ‖L2(Ω)).

Thus, due to Hölder’s inequality
∣
∣
∣
∣
∣

∫

Aε,ai
\A2ε,ai

e2
√

λρui,ληi∇ηi · ∇ui,λ dxdt

∣
∣
∣
∣
∣

≤ Ce2
√

λmi‖∇ηi‖L∞(Ω)

(‖fi,λ‖L2(QT ) + ‖u0i,λ‖L2(Ω)

)2
, (6.14)

where mi is defined as

mi := sup
(x,t)∈Aε,ai

\A2ε,ai

ρ(x, t).

Notice that ui,λ∇ηi cancels out outside Aε,ai
\A2ε,ai

and ηi ∈ W 2,∞(QT )
∫

Aε,ai
\A2ε,ai

∇(e2
√

λρηiui,λ) · ui,λ∇ηi dxdt

= −
∫

Aε,ai
\A2ε,ai

e2
√

λρηiui,λ(ui,λΔηi + ∇ui,λ · ∇ηi) dxdt.
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Hence, integrating by parts on the spatial domain, we find that
∣
∣
∣
∣
∣

∫

Aε,ai
\A2ε,ai

∇(e2
√

λρηiui,λ) · ui,λ∇ηi dxdt

∣
∣
∣
∣
∣

≤ Ce2
√

λmi(‖∇ηi‖L∞(QT ) + ‖Δηi‖L∞(QT ))
(‖fi,λ‖L2(QT ) + ‖u0i,λ‖L2(Ω)

)2
.

(6.15)

We decompose the term corresponding to the time derivative on the right
hand side of inequality (6.13) in two terms

∫

Aε,ai

e2
√

λρηiui,λ∂t(ηiui,λ) dxdt =
∫

Aε,ai

e2
√

λρη2
i ui,λ∂tui,λ dxdt

+
∫

Aε,ai

e2
√

λρηiu
2
i,λ∂tηi dxdt,

and due to the fact that ∂tηi cancels out outside Aε,ai
\A2ε,ai

, we find the
upper bound
∣
∣
∣
∣
∣

∫

Aε,ai
\A2ε,ai

e2
√

λρηiu
2
i,λ∂tηi dxdt

∣
∣
∣
∣
∣

≤ Ce2
√

λmi(‖∂tηi‖L∞(QT ))
(‖fi,λ‖L2(QT )

+‖u0i,λ‖L2(Ω)

)2
. (6.16)

Consequently, we rewrite inequality (6.13) using (6.14)–(6.16)

λδ

4

∫

Aε,ai

e2
√

λρη2
i u2

i,λ dx dt ≤ Ce2
√

λmi

+

∫

Aε,ai

(
∇(e2

√
λρη2

i ui,λ) · ∇ui,λ + λaie
2
√

λρη2
i u2

i,λ + e2
√

λρη2
i ui,λ∂tui,λ

)
dx dt,

where C = C(‖∇ηi‖L∞(Ω), ‖Δηi‖L∞(Ω), ‖∂tηi‖L∞(Ω), ε). Since ηi is identi-
cally zero outside Aε,ai

, the function e2
√

λρη2
i ui,λ ∈ L2(0, T ;H1

0 (Ω)) is an
admissible test function for each component i of (Pλ). Therefore
∫

Aε,ai

(
∇(e2

√
λρη2

i ui,λ) · ∇ui,λ + λaie
2
√

λρη2
i u2

i,λ + e2
√

λρη2
i ui,λ∂tui,λ

)
dxdt

=
∫

Aε,ai

e2
√

λρη2
i ui,λfi,λ dxdt +

∫

Aε,ai

αie
2
√

λρη2
i ui,λûi,λ dxdt,

which implies that

λδ

4

∫

Aε,ai

e2
√

λρη2
i u2

i,λ dx dt

≤ Ce2
√

λmi +

∫

Aε,ai

e2
√

λρη2
i ui,λfi,λ dx dt +

∫

Aε,ai

e2
√

λρη2
i αiui,λûi,λ dx dt.

(6.17)
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Finally, we choose as a particular case

ρ(x, t) := min

(√
δ

2
,
δ

2

)

min
(
dist((x, t), Ac

2ε,a1
),dist((x, t), Ac

2ε,a2
)
)
,

which satisfy all our needed conditions (ρ is Lipschitz, |∂tρ| + |∇ρ|2 ≤ δ/2
and has support on Aε,a1 ∪ Aε,a2). In this case, mi = 0, therefore, expression
(6.17) is reduced to

λδ

4

∫

Aε,ai

e2
√

λρη2
i u2

i,λ dxdt ≤ C +
∫

Aε,ai

e2
√

λρη2
i ui,λfi,λ dxdt

+
∫

Aε,ai

e2
√

λρη2
i αiui,λûi,λ dxdt.

Equivalently
∫

Aε,ai

e2
√

λρη2
i ui,λ

(
λδ

4
ui,λ − fi,λ − αiûi,λ

)

dxdt ≤ C.

�

To conclude, we observe that the previous lemma can be specified for a
linear eigenvalue problem with fi,λ = σui,λ, where σ stands for an eigenvalue
associated with the eigenfunction ui,λ. Then, thanks to Lemma 6.2, we find a
decay estimation for the eigenfunctions on the boundary of the regions Oai

.

Corollary 6.3. In the particular case where fi = 0 in QT \Oai
, we obtain the

following estimation of the solutions’ convergence Uλ → 0 of problem (Pλ)
when λ → ∞ outside the regions Oai

:

e2cδε
√

λ

∫

A2ε,ai

ui,λ

(
λδ

4
ui,λ − αiûi,λ

)

dxdt ≤ C, with cδ := min

(√
δ

2
,
δ

2

)

.
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[4] Álvarez-Caudevilla, P., Du, Y., Peng, R.: Qualitative analysis of a cooperative
reaction-diffusion system in a spatiotemporally degenerate environment. SIAM
J. Math. Anal. 46(1), 499–531 (2014)

[5] Amann, H.: Maximum Principle and Principal Eigenvalues. In: Ferrera, J.,
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