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A B S T R A C T   

The climate change impact and adaptation communities need future scenarios with sufficient high resolution, 
which are frequently achieved by applying Statistical Downscaling Models (SDMs) over global climate models. A 
large variety of SDMs exists, and some can be more suitable than others for each specific purpose. For this reason, 
it is important to develop tools to facilitate the evaluation and generation of downscaled scenarios following 
different approaches. In this paper we present a service, ‘pyClim-SDM’, which allows users to generate and 
evaluate their own downscaled scenarios with a very simple and user-friendly graphical interface. This tool 
includes a large collection of state-of-the-art methods belonging to different families to downscale daily data of 
the following surface variables: temperature, precipitation, wind, relative humidity and cloud coverage. Addi
tionally, the software is prepared to be applied over any other user-defined target variable. Thus, multivariable 
indexes can be tackled as target variables themselves, instead of being calculated from the downscaled primary 
variables. With this possibility, potential intervariable inconsistencies are avoided. An application example for a 
Fire Weather Index, dependent on temperature, wind, humidity and precipitation, is shown. The service here 
presented -mainly based on a new downscaling software and a user-friendly graphical interface- is an essential 
piece for evaluating and generating high-resolution projection data within the Spanish national climate change 
adaptation strategy which includes, among other elements, a common database for all sectors, viewer and data 
distribution portal, etc.   

Practical implications  

There is an increasing demand for high-resolution climate pro
jections for impact and adaptation studies. The Paris Agreement 
reached in 2015 by the United Nations Framework Convention on 
Climate Change (UNFCCC, 2015) establishes that Parties should 
undertake pertinent adaptation measures. Here we present a ser
vice to generate high-resolution climate change projections that 
has the following features:  

• It is one of the elements feeding the Spanish National Plan of 
Adaptation to Climate Change.  

• It is being applied also for adaptation purposes in the Central 
American region.  

• It can be easily used by non-experts on climate data. 
• It is also prepared for more academic evaluation and compari

son exercises. 

This tool has been developed and applied to feed the Spanish 
National Plan of Adaptation to Climate Change, and we consider it 
might be useful for other countries to accomplish their compro
mises on adaptation. 

Data availability 

Data used for this study is freely available (see the Data and Code 
availability section)   
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1. Introduction 

Global Climate Models (GCMs) are the primary tool to simulate 
future climate projections, but they have known biases and their reso
lution is not enough to meet the necessities of the impact and adaptation 
communities (Charles et al., 2004; Wilby, 2004; Schoof, 2013). Two 
primary categories of downscaling techniques exist: (1) dynamic 
downscaling, mostly by nesting a high-resolution Regional Climate 
Model (RCM) within a GCM and (2) statistical downscaling (SD), based 
on the existence of statistical relationships between large-scale variables 
(predictors) and local variables (predictands). Some major advantages 
of Statistical Downscaling Models (SDMs) are their computational 
cheapness compared with dynamic downscaling (Trzaska and Schnarr, 
2014) and their capability of downscaling to single point scale. 

The Paris Agreement reached in 2015 by the United Nations 
Framework Convention on Climate Change (UNFCCC, 2015), in its 
Article 7, establishes that Parties should undertake pertinent adaptation 
measures. For this task, regional information on climate change is 
needed, and there is an increasing effort to provide high-resolution 
climate projections around the world. The Coordinated Regional 
Climate Downscaling Experiment (CORDEX) is a frequent source of high 
resolution climate projections supporting regional and local climate 
impact studies and adaptation decisions. Nevertheless, their downscaled 
projections still lack the needed resolution for some applications over 
many regions. Thus, Parties often need to additionally generate their 
own downscaled climate projections, and this is usually done using 
statistical methods. 

There is a huge variety of SDMs belonging to different families and 
relying on different assumptions. SDMs are based on the assumption of 
stationarity in the statistical relationships between predictors and pre
dictands. SDMs can be categorized depending on their calibration 
strategy as Perfect Prognosis (PP) and Model Output Statistics (MOS). 
The PP approach relies on the assumption that model predictors are 
unbiased, so these methods are calibrated using observations (rean
alysis) and then they are applied to GCMs. On the other hand, the MOS 
approach assumes imperfections from models, and SDMs are calibrated 
making use of the GCMs themselves, so their biases are incorporated and 

Fig. 1. pyClim-SDM screenshot.  

Table 1 
Global Climate Models used for the test example.  

Model Institution References 

ACCESS- 
CM2 

Commonwealth Scientific and Industrial 
Research Org. (CSIRO) and Bureau of 
Meteorology (BoM), Australia 

Bi et al. (2020)  

CanESM5 Canadian Centre for Climate Modelling and 
Analysis, Canada 

Swart et al. 
(2019) 

EC-Earth3 EC-Earth consortium, Europe Döscher et al. 
(2021) 

INM-CM5-0 Institute of Numerical Mathematics, Russia Volodin et al. 
(2017) 

MIROC6 Research Center for Environmental Modeling 
and Application, Japan 

Tatebe et al. 
(2019) 

MPI-ESM1- 
2-HR 

Max-Planck-Institut (MPI) for Meteorology, 
Germany 

Müller et al. 
(2018) 

MRI-ESM2-0 Meteorological Research Institute, Tsukuba, 
Japan 

Yukimoto et al. 
(2019)  

Table 2 
Predictors used for the test example. tas (mean surface temperature), tasmax 
(maximum surface temperature), tasmin (minimum surface temperature), pr 
(precipitation), uas (surface zonal wind component), vas (surface meridional 
wind component), sfcWind (surface wind speed), hurs (surface relative humid
ity), clt (cloud coverage), FWI (Fire Weather Index), psl (mean sea level pres
sure), K_index (stability ‘K index’), TT_index (stability ‘Total of totals index’). 
Upper air predictors (at 850 and 500 hPa): ua (zonal wind component), va 
(meridional wind component), ta (temperature) and hur (relative humidity).  

Target variable Predictors 

tas, tasmax, 
tasmin 

tas, ua850, ua500, va850, va500, ta850, ta500 

pr psl, ua850, ua500, va850, va500, hur850, hur500, K_index, 
TT_index 

uas, vas, 
sfcWind 

uas, vas, ua850, ua500, va850, va500, ta850, ta500 

hurs tas, hurs, ta850, ta500, hur850, hur500 
clt clt 
FWI psl, uas, vas, tas, hurs, ua850, ua500, va850, va500, ta850, ta500, 

hurs850, hurs500, K_index, TT_index  
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taken into account. Most MOS methods (see for example Maraun, 2016) 
adjust different aspects (mean value, variance, quantiles, etc.) of the 
simulated series to match those from observations. The two major 
drawbacks of MOS methods are the assumption of stationarity of model 
biases in the future and the impact that different adjustments may have 
on trends given by GCMs. However, some MOS methods are able to 
preserve trends, and some do not even assume stationarity (see Sect. 
2.1). Transfer Function methods are based on the existence of statistical 
relationships between large scale predictors and local predictands 
(Sailor and Li, 1999; Wilby et al., 2002), which are detected and cali
brated in the present and applied over future simulations. These re
lationships can go from simple linear models (LIN) such as Multiple 
Linear Regression (MLR) and Generalized Linear Models (GLM) (Wilby 
et al., 2002) to complex nonlinear relationships based on Machine 
Learning (ML) algorithms such as Artificial Neural Networks (ANN; 
McCulloch and Pitts, 1943; Rosenblatt, 1958) or Support Vector Ma
chines (SVM; Boser et al., 1992; Cortes and Vapnik, 1995; Vapnik, 
1995). Another family of SDMs, Analog (ANA) and Weather Typing 
(WT), is based on the assumption of similar local conditions under 
similar synoptic situations (Lorenz, 1969; Zorita and von Storch, 1999). 
These methods search for analog synoptic conditions that occurred in 
the past to those projected by GCMs and their major drawback is their 
limitation to predict values inside of the observed range. And finally, 
Weather Generators (WG) are stochastic models able to produce 

synthetic series matching their marginal and temporal aspects with 
climatological statistics conditioned on properties given by GCMs sim
ulations (Wilks and Wilby, 1999). As it has been said, all the statistical 
relationships found in the present (regression coefficients, model pa
rameters for ML methods or link between weather types and local pre
dictands) are assumed to be maintained under future climate change. 
Although these are the main categories, there are also hybrid methods 
which combine features of the different families. For a more detailed 
description of these families and approaches see, e.g., Maraun and 
Widmann (2018). 

Furthermore, there is not a clear best approach. Some SDMs appear 
to be more suitable for some purposes and some SDMs get better results 
for others. See the intercomparison of a large ensemble of SDMs per
formed in Gutiérrez et al. (2019), in which the main strengths and 
limitations of each family can be found, for more information. For this 
reason, there is a user need for availability of downscaled climate pro
jections using different SDMs. 

There are some available packages aiming to provide users with 
simple tools to generate their own downscaled projections. For example, 
Wilby et al. (2002) published their famous ‘Statistical DownScaling 
Model’ (SDSM), a tool for rapid development of multiple, low-cost, 
single-site scenarios of daily surface weather variables under current 
and future regional climate forcing. More recently other very complete 
packages incorporating a large set of state-of-the-art SDMs from different 

Fig. 2. Area of study. The red rectangle defines the domain used for synoptic analogy. (For interpretation of the references to colour in this figure legend, the reader 
is referred to the web version of this article.) 
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families have appeared. One example is the ‘esd’ R-package (Benestad 
et al., 2007), freely available from the Norwegian Meteorological 
Institute (https://github.com/metno/esd). This package is designed for 
climate and weather data analysis, empirical-statistical downscaling of 
monthly and daily data, and visualization, and it incorporates several 
SDMs such as EOF analysis, regression, canonical correlation analysis, 
multivariate regression, and weather generators. Another example is the 
‘downscaleR’ package (Bedia et al., 2020), freely available from the 
Santander Meteorology Group (https://github.com/SantanderMetGr 
oup/downscaleR). This package is designed for empirical-statistical 
downscaling of daily data and it includes several SDMs such as quan
tile mapping, regression, analogs and neural networks. And there are 
several more specific packages, focused on particular families or ap
proaches, such as the ‘Rglimclim’ package (https://www.ucl.ac.uk/~uc 
akarc/work/glimclim.html) with Generalized Linear Models, ‘scikit- 
downscale’ (https://github.com/pangeo-data/scikit-downscale) with 
methods based on Quantile Mapping, Linear Models and Analogs, 
‘pyCAT’ (https://github.com/wegener-center/pyCAT) with different 
versions of Quantile Mapping or ‘ClimDown’ (https://github.com/pacifi 
cclimate/ClimDown) with methods based on Quantile Mapping and 
Analogs. 

These packages provide the user with routines and libraries and are 
meant for advanced users with programming knowledge. On the con
trary, in this paper we present a new tool, pyClim-SDM, with a user- 
friendly graphical interface that makes its use simple and intuitive. 
Due to the lower computational expense of the statistical methods 
compared to RCMs, this software allows the generation of large en
sembles to explore uncertainties associated with different Global 
Climate Models and/or emission scenarios, which is very useful espe
cially in regions where RCMs simulations are scarce. pyClim-SDM in
cludes a large set of state-of-the-art statistical methods developed and 

evaluated in a number of projects and initiatives including the most 
recent approaches based on machine learning techniques. It is prepared 
to downscale daily data of surface temperature, precipitation, wind, 
humidity and cloud cover. Additionally, any user-defined climate index 
can be downscaled and evaluated. An application example for a Fire 
Weather Index (FWI) dependent on different fundamental variables is 
presented. 

Previous versions of the software have already been used for 
different purposes. The Spanish Meteorological Agency (AEMET) is 
responsible for the elaboration of downscaled climate projections over 
Spain to feed the National Plan of Adaptation to Climate Change 
(PNACC) and the Spanish Adaptation Viewer ‘AdapteCCa’ (https://esce 
narios.adaptecca.es). In this context, different methods have been 
thoroughly evaluated in the region using a previous version of the 
software (García-Valero, 2021; Hernanz et al., 2021a; Hernanz et al., 
2021b; Hernanz et al., 2022a) in order to be employed over the CMIP6 
generation. And in the same context, previous versions of the software 
were used to generate downscaled projections in Spain using the CMIP5 
generation (Amblar-Francés et al., 2017). It has been also used for the 
elaboration of high-resolution projections in the Pyrenees region 
(Amblar-Francés et al., 2020) under the CLIMPY project (https://www. 
opcc-ctp.org/es/climpy) and to feed the associated viewer (https:// 
www.opcc-ctp.org/en/geoportal). Previous versions of the software 
have been used within the EUROCLIMA + programme (https:// 
euroclimaplus.org/) to generate climate change regional information 
for Central America, available at https://centroclima.org/escenarios-c 
ambio-climatico/. In this context, the current version of the software 
has been co-designed with personnel of the meteorological and hydro
logical national services of Guatemala, Honduras, El Salvador, Panamá, 
Costa Rica and Nicaragua. This co-design process has been carried out 
through a series of training workshops in which these users were guided 

Table 3 
List of Statistical Downscaling Models available at pyClim-SDM and their disk consumption and execution times for the test example. Downscaling times correspond to 
one GCM and SSP5-8.5. Disk consumption refers to calibrated models, not to the output itself. Be aware that both disk and execution times strongly depend on the 
number of target points and the number of predictors. ip has been used for disk consumption lower than 20 Mb and execution times lower than 5 min. For other 
variables, disk consumption and execution times are similar to temperature. Some methods are not common to temperature and precipitation, and others do not need 
training. Both cases are represented by ‘-‘.  

Family Method Temperature Precipitation 

Training 
Disk 

Training 
Time 

Downscaling 
Time 

Training 
Disk 

Training 
Time 

Downscaling 
Time 

RAW (interpolation) RAW 
RAW-BIL 

– 
- 

– 
- 

ip 
ip 

– 
- 

– 
- 

ip 
ip 

MOS (Model Output Statistics) QM 
DQM 
QDM 
PSDM 

- 
- 
- 
- 

- 
- 
- 
- 

ip 
ip 
ip 
ip 

- 
- 
- 
- 

- 
- 
- 
- 

ip 
ip 
ip 
ip 

ANA / WT (Analogs/Weather Typing) ANA-SYN-1NN 
ANA-SYN-kNN 
ANA-SYN-rand 
ANA-LOC-1NN 
ANA-LOC-kNN 
ANA-LOC-rand 
ANA-VAR-1NN 
ANA-VAR-kNN 
ANA-VAR-rand 

- 
- 
- 
ip 
ip 
ip 
- 
- 
- 

- 
- 
- 
ip 
ip 
ip 
- 
- 
- 

10′ 
10′ 
10′ 
20′ 
20′ 
20′ 
10′ 
10′ 
10′ 

- 
- 
- 
ip 
ip 
ip 
- 
- 
- 

- 
- 
- 
ip 
ip 
ip 
- 
- 
- 

10′ 
10′ 
10′ 
20′ 
20′ 
20′ 
10′ 
10′ 
10′ 

Linear MLR 
MLR-ANA 
MLR-WT 
GLM-LIN 
GLM-EXP 
GLM-CUB 

ip 
- 
ip 
- 
- 
- 

ip 
- 
ip 
- 
- 
- 

ip 
20′ 
10′ 
- 
- 
- 

- 
- 
- 
ip 
ip 
ip 

- 
- 
- 
ip 
ip 
ip 

- 
- 
- 
ip 
ip 
ip 

Machine 
Learning 

SVM 
LS-SVM 
RF 
XGB 
ANN 
CNN 

280 Mb 
270 Mb 
59 Gb 
250 Mb 
98 Mb 
314 Mb 

1 h30′ 
20′ 
ip 
ip 
ip 
ip 

ip 
ip 
ip 
ip 
ip 
ip 

1.2 Gb 
502 Mb 
48 Gb 
399 Mb 
201 Mb 
1.7 Gb 

2 h 
1 h 
40′ 
ip 
ip 
ip 

20′ 
20′ 
ip 
ip 
ip 
ip 

WG (Weather Generators) WG-NMM 
WG-PDF 

- 
ip 

- 
ip 

- 
ip 

ip 
ip 

10′ 
ip 

ip 
ip  
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on the use of the software to produce their own downscaled climate 
projections, and their requests, mainly related to the intuitiveness of the 
software, were implemented. An adaptation of the software has also 
been used for the development of downstream climate services based on 
seasonal forecasts (Sanchez-García et al., 2021). Additionally, the soft
ware has been used for more academic purposes (Hernanz et al., 2022b; 
Hernanz et al., 2022c) and has the potential to be used in different 
projects and regions. It should be noticed that potential users of pyClim- 
SDM are not the final consumers of climate information, but interme
diate users facing the need for high resolution climate change scenarios. 

The main objective of the paper is to present pyClim-SDM, a user 
friendly tool for statistical downscaling of climate change projections, 
and the paper is organized as follows. First, we provide a description of 
the downscaling methods in Section 2. Then, in Section 3, we perform a 
test example, providing evaluation results, a description of the technical 
specifications of the environment used for it and the execution times, as 
well as a real application example. And finally, in Section 4, we include 
the main conclusions. 

2. Downscaling methods 

pyClim-SDM incorporates a large set of state-of-the-art SDMs 
belonging to different families, easily usable through its Graphical User 
Interface (Fig. 1): 

Raw models (no downscaling):  

• RAW: nearest grid point.  
• RAW-BIL: bilinear interpolation. 

Model Output Statistics (MOS):  

• QM: basic Empirical Quantile Mapping (Themeßl et al., 2011). The 
simulated series are adjusted by quantiles to match the observed 
distributions, and then those corrections are applied to the future. 
Quantiles for future values are derived from the past distribution.  

• DQM: Detrended Quantile Mapping (Cannon et al., 2015), adapted 
from the ‘ClimDown’ software (https://github.com/pacificclimate 
/ClimDown). The long-term trend of the observed and simulated 
series is first removed and then the adjustment by quantiles is done. 
This method preserves the signal of change in the mean values given 
by GCMs. Quantiles for future values are derived from the past 
distribution.  

• QDM: Quantile Delta Mapping (Cannon et al., 2015), adapted from 
the ‘ClimDown’ software (https://github.com/pacificclimate/Cli 
mDown). A delta change is applied for each quantile of the simu
lated and observed series so trends are preserved in all quantiles and 
no assumption on the transferability of biases is made. Quantiles for 
future values are derived from the future distribution.  

• PSDM: (Parametric) Scaled Distribution Mapping (Switanek et al., 
2021), adapted from the ‘pyCAT’ software (https://github.com/w 
egener-center/pyCAT). This method is similar to QDM, but it per
forms the quantiles adjustment over a parametric distribution fitting 

Fig. 3. Correlation for daily downscaled and observed series of temperature (tas, top-left), precipitation (pr, top-center), surface wind speed (sfcWind, top-right), 
relative humidity (hurs, bottom-left) and cloud cover (clt, bottom-center). SDMs have been colored by families: RAW (gray), MOS (orange), ANA / WT (red, 
light red and dark red), LIN (cyan), ML (dark blue, purple and pink) and WG (green). Each box contains the quartiles of all grid points (828 values) and the whiskers 
extend to a maximum of 1.5 times the interquartile range. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version 
of this article.) 
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the observed and simulated series. For precipitation it uses a gamma 
distribution and explicitly adjusts the precipitation occurrence. For 
other target variables a normal distribution is used. Quantiles for 
future values are derived from the future distribution. 

Analog/Weather Typing methods (ANA/WT):  

• ANA-SYN: Analog based on synoptic analogy. The similarity is 
established using the user  

• defined synoptic analogy fields, measured by the Euclidean distance. 
Previously  

• these fields have been reduced to principal components preserving 
the 95%  

• (configurable) of the variance. 1NN: Nearest analog. For each target 
day, a  

• search of similar days in the past is done, and it takes the values of the 
observations  

• corresponding to the closest analog. kNN: k-nearest analogs. Similar 
to ANA-SYN-1NN but instead of taking values of the closest  

• analog, it averages the k (configurable) closest analogs. rand: 
random analog with probabilities given by their analogy. Similar to 
ANA-SYN-kNN but instead of averaging the k closest analogs, it takes 
one of them randomly, having each analog an associated probability 
depending on the similarity. See Hernanz et al. (2021a). 

• ANA-LOC (1NN/kNN/rand): Same as ANA-SYN but using a com
bination of synoptic + local analogy. Local analogy is given by the 
similarity (measured by the Euclidean distance) of a set of significant 
predictors for each grid point and weather type. The initial set of 
potential predictors is defined by the user. See Petisco de Lara 
(2008a), Amblar-Francés et al. (2017) and Hernanz et al. (2021a).  

• ANA-VAR (1NN/kNN/rand): Same as ANA-SYN but using the 
spatial pattern of the target variable itself. 

Linear methods (LIN): The physical variables used as predictors are 
defined by the user.  

• MLR: multiple linear regression, not available for precipitation. See 
Amblar-Francés et al., (2017) and Hernanz et al. (2021). Based on the 
SDSM (Wilby et al., 2002). MLR-ANA: multiple linear regression 
based on analogs. See Petisco de Lara (2008b), Amblar-Francés et al. 
(2017) and Hernanz et al. (2021a). First, analog days are selected 
using the Euclidean distance of the analogy fields as similarity 
metric, and then, for each grid point, a multiple linear regression is 
calibrated using those analog days. MLR-WT: multiple linear 
regression based on weather types. Similar to ANA-MLR but using 
precalibrated regressions for each weather type. Based on Petisco de 
Lara (2008b).  

• GLM: Generalized Linear Model, only available for precipitation. A 
combination of logistic regression for the wet/dry classification with 
a multiple linear regression for the precipitation amount (LIN), with 
the possibility of using transformed data (EXP for exponential and 
CUB for cubic transformations). See Amblar-Francés et al. (2017) 
and Hernanz et al. (2021a). Based on the SDSM (Wilby et al., 2002). 

Machine Learning (ML) methods: The physical variables used as 
predictors are defined by the user.  

• SVM: nonlinear machine learning method based on Support Vector 
Machines (Drucker et al., 1997), used for a classification task for the 
precipitation occurrence and for a regression task for the precipita
tion intensity and the other target variables. See Hernanz et al. 
(2021a).  

• LS-SVM: same as SVM but using a Least-Square Support Vector 
Machines (Suykens and Vandewalle, 1999). See Hernanz et al. 
(2021a). 

Fig. 4. Same as Fig. 3, but for relative bias of variance for downscaled daily series.  
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• RF: same as SVM but using a Random Forest (Breiman, 2001).  
• XGB: eXtreme Gradient Boosting (Chen and Guestrin, 2016).  
• ANN: same as SVM but using Artificial Neural Networks based on the 

multilayer perceptron (Rosenblatt, 1958). See García-Valero (2021) 
and Hernanz et al. (2021a).  

• CNN: same as ANN but using Convolutional Neural Networks (see for 
example Gu et al., 2018). 

Weather Generators:  

• WG-NMM: Non-homogeneous Markov Model consisting of a non- 
parametric Weather Generator following a first-order two-state 
(wet/dry) Markov chain. Both the transition probabilities and the 
empirical distributions used for the intensity are conditioned on the 
precipitation given by the reanalysis/models. See Richardson 
(1981). Only available for precipitation.  

• WG-PDF: weather generator based on downscaling parameters of the 
distributions instead of downscaling daily data. See Erlandsen et al. 
(2020) and Benestad (2021). Monthly means, standard deviations 
and rain frequencies are downscaled for each grid point using a 
linear regression and then daily data is randomly generated using an 
exponential distribution for precipitation and a normal distribution 
for the other target variables. 

Predictors for almost all methods are taken from the four nearest 
coarse resolution gridpoints bilinearly interpolated. For RAW, the 
nearest gridpoint is used instead. And for Analog methods, the synoptic 
analogy is measured over a large spatial domain defined by the user. All 
methods, except MOS methods, use a reanalysis for the search of sta
tistical relationships with observations, i.e. they follow a Perfect Prog
nosis approach. It must be noticed that the term MOS is being used for 

two different purposes. While the MOS approach refers, as explained at 
section 1, to a calibration strategy, the same term has been used to define 
a group of the SDMs available at pyClim-SDM. 

3. Test example 

In the following subsections a test example is shown. In Section 3.1 a 
description of the data used is provided. Then, an evaluation of basic 
variables (temperature, precipitation, wind speed, relative humidity, 
and cloud cover) is shown in Section 3.2. And finally, a more sophisti
cated use of the software possibilities is shown in Section 3.3, tackling a 
customized climate index. In this case a Fire Weather Index has been 
used. This last example is described in some detail, so it can be used as a 
guide. pyClim-SDM is ready to be run both in serial processing and in 
parallel, using High-Performance Computers (HPCs) under the popular 
SLURM Workload Manager (Yoo, Jette and Grondona, 2003). There is 
no need for HPC, everything can be done in serial processing. Never
theless, for large datasets and computational demanding downscaling 
methods, processing times in serial can be too long. 

This test example has been performed combining the following two 
environments: (1) For preprocessing and postprocessing steps we have 
used a virtual machine with 32 CPUs and 64 GB of memory under a 
virtual infrastructure VMware® 7.0. SO CentOS Linux release 7.6.1810. 
Virtual servers: 18xFujitsu Primergy RX2540 M5 with 2xIntel Xeon Gold 
5218 16cores at 2,3 GHz y 768 GB of memory DDR$-2933 MHz. (2) For 
training methods and downscaling we have used a High-Performance 
Computer consisting of two clusters of 140 nodes. Each node has 2 
processors AMD EPYC™7742 of 64 cores, 256 GB DDR4-3200 of 
memory and 1 SSD of 240 GB. SO Red Hat Enterprise Linux. 

Fig. 5. Same as Fig. 3 but for mean value bias of downscaled series, relative for precipitation and absolute for the rest.  
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3.1. Data 

Predictands have been taken from the reanalysis ERA5 (Hersbach 
et al., 2020) of the European Centre for Medium-Range Weather Fore
casts (ECMWF) with a resolution of 0.25◦ over land (828 points). The 
election of a reanalysis instead of actual observations has been done due 
to the lack of availability of observations for the different meteorological 
variables analyzed. It should be noticed that ERA5 precipitation is not 
assimilated, and therefore substantial biases can exist. Thus, results here 
shown for precipitation (and for all variables in general) might differ 
when using actual observations. Nonetheless, presenting an accurate 
evaluation of the SDMs is not the purpose of this paper, for their 
application to different regions and/or datasets is unique and SDMs 
must be evaluated for each particular application. Predictors have been 
taken from the same reanalysis but with a resolution of 1.5◦ and from the 
seven CMIP6 (Eyring et al., 2016) models listed in Table 1. 

For each variable, predictors listed in Table 2 have been used, with a 
spatial resolution of 1.5◦ × 1.5◦ (GCMs outputs have been previously 
interpolated with bilinear interpolation from their original resolutions). 
All predictors have been standardized using their own mean and stan
dard deviation over the reference period 1979–2005. For the synoptic 
analogy, zonal and meridional wind components at 850 and 500 hPa 
and relative humidity at 700 hPa have been used, based on Ribalaygua 
et al. (2018), in the domain (23.5oN, 100.5oW, 1oN, 70.5oW). See area of 

study at Fig. 2. 
All these inputs need to be prepared by the user in a specific but 

standard format, and storaged in the corresponding folders (see the User 
Manual accompanying the software for detailed information). 

SDMs have been trained in 1979–2005 and evaluated over reanalysis 
in 2006–2020. Projections correspond to run r1i1p1f1 of SSP1-2.6, 
SSP2-4.5, SSP3-7.0 and SSP5-8.5 scenarios (see IPCC, 2021) in 
2015–2100, plus the historical scenario in 1951–2014. See (Table 3). 

3.2. Evaluation 

In this subsection, SDMs have been evaluated for the following target 
variables in a historical period over a reanalysis: temperature, precipi
tation, wind speed, relative humidity, and cloud cover. Following the 
VALUE framework established by Maraun et al. (2015), the first aspect 
evaluated is the correlation between the downscaled and observed daily 
series (Fig. 3). In general, Analog methods and Weather Generators 
present poor correlations, while the other families reach higher corre
lations. High correlations are a good indicator for the ability of SDMs to 
reproduce temporal aspects, such as warm or dry spells. RAW (inter
polation) also shows high correlations, but they do not capture the 
variability at all (Fig. 4). MOS methods are, in general, the ones with 
lower biases in the variance, while other methods tend to a certain un
derestimation of it. Precipitation variability presents a special difficulty 

Fig. 6. Histogram of observed FWI (top-left), annual cycle of observed and downscaled FWI (top-right), bias for the number of days over the 90th percentile of FWI in 
the dry season by SDMs (bottom-left) and SDMs bias corrected using QM by seasons (bottom-right). SDMs have been colored by families: RAW (gray), MOS (orange), 
ANA / WT (red, light red and dark red), LIN (cyan) and ML (dark blue, purple and pink). (For interpretation of the references to colour in this figure legend, the 
reader is referred to the web version of this article.) 
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Fig. 7. Evolution of the change in the number of days over the 90th percentile (days), spatially averaged, by RAW (gray) and each SDM bias corrected using QM by 
season over GCMs in Table 1 and under SSP5-8.5 from 2015 to 2100. SDMs have been colored by families: MOS (orange), ANA / WT (red, light red and dark red), LIN 
(cyan) and ML (dark blue, purple and pink). The shaded area expands from the 25th to the 75th percentiles, and the line represents the median of the multi-model 
ensemle. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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for most methods, suggesting the need of a posterior bias correction for 
adjusting the variance. Finally, Fig. 5 shows the mean values bias over 
the whole testing period. Results achieved by most SDMs confirm the 
benefits of downscaling over performing a simple interpolation. pyClim- 
SDM allows for user-defined seasons in order to analyze this and other 
metrics by season. All evaluation figures shown in this study are pro
duced by the tool, so the user can easily compare different metrics or 
aspects among the collection of included methods. Other important 
figures are also generated by pyClim-SDM, such as biases for other in
dexes, e.g. percentiles, extremes, spells, etc., or the spatial distributions 
of each variable and the correlation of those spatial patterns between 
observations and simulations. The analysis shown in this study is just a 
sample of what can be easily produced by the software, but in order to 
make decisions, users are encouraged to analyze more aspects. Take as 
an example the analysis on the spatial aspects, temporal aspects and 
extremes done in Widmann et al. (2019), Maraun et al. (2019) and 
Hertig et al. (2019), respectively. 

3.3. Application 

In this subsection, we show and explain how to use the software to 
downscale a user-defined target variable. Any variable can be poten
tially downscaled, from direct GCMs outputs such as soil moisture or 

solar radiation to secondary variables derived from them, as long as 
observations are available. In this case we have used a Fire Weather 
Index (FWI; Van Wagner, 1987), which depends on temperature, pre
cipitation, wind speed and humidity. First, all SDMs have been applied 
and evaluated in a historical period over reanalysis, with and without a 
posterior bias correction. Then, trends of all SDMs have been compared 
with those given by raw GCMs. And finally, projections for several 
emission scenarios are shown for a selected SDM and different temporal 
horizons. 

In order to downscale a user-defined target variable, observations of 
that variable are needed. In this case, we have generated the observed 
FWI from temperature, precipitation, wind speed, and relative humidity 
observations using the FireDanger package (https://github.com/ 
steidani/FireDanger). For some methods, those which also make use 
of the coarse resolution version of the predictand as predictor, and for 
some purposes, the variable is also needed at low resolution. We have 
calculated the FWI for both reanalysis and GCMs and generated their 
netCDF files following the format explained in the input_data_template 
that accompanies the software. 

In this example we will apply bias correction after downscaling. In 
order to apply both steps, long downscaled and observed series are 
needed. For this reason, instead of using the train/test split from the 
previous section (only 15 testing years), we will downscale 42 years 

Fig. 8. Change in the number of days over the 90th percentile (days) in the dry season, given by the ensemble median (columns 1 and 3) of the GCMs from Table1, 
and ensemble spread (columns 2 and 4), given by the interquartile range. The downscaling method applied is XGB, bias corrected using QM by season. SSP1-2.6 (first 
row), SSP2-4.5 (second row), SSP3-7.0 (third row) and SSP5-8.5 (fourth row). Changes correspond to 2041–2070 (columns 1 and 2) and 2071–2100 (columns 3 and 
4) with respect to the reference period (1979–2005). 
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(1979–2020) using a k-fold approach. A k-fold technique consists on 
splitting the whole period in train/test several times (five in this case), so 
each round a different subset is downscaled, and the independency be
tween training and testing datasets is preserved. This way, the prepro
cess, training, and process steps need to be run five times, selecting folds 
from 1 to 5. After the last fold has been processed, the bias correction can 
be done, selecting now ‘all_testing’, so the 42 years are used in this step. 

When using new target variables, it is important to characterize them 
before applying any downscaling. Fig. 6 (top-left) shows the distribution 
(histogram) of the observed FWI. Most days present values close to zero, 
and the distribution is clearly non-gaussian. The interest of the FWI is in 
the high values, which indicate high risk of fire, so we will focus the 
study on the tail of the distribution, specifically on the number of days 
with FWI over the 90th percentile (FWI90p). In Fig. 6 (top-right) we also 
see the annual cycle of FWI, which is strongly related to the precipitation 
annual cycle (not shown). We will focus only on the Central American 
dry season, from January to April, when the highest FWIs are reached. 
As it can be seen in Fig. 6 (top-right), all SDMs accurately capture the 
annual cycle averaged over the whole study region. When analyzing 
how well they capture the tail of the distribution (extremes), given by 
FWI90p in the dry season, Fig. 6 (bottom-left) shows how all SDMs 
present a clear advantage over the simple interpolation. Nevertheless, 
after applying a bias correction by season using QM, Fig. 6 (bottom- 
right) biases both by RAW and SDMs are strongly reduced. This indicates 
that the simple interpolation can be a valid approach as long as a bias 
correction is applied over it (which is actually equivalent to the MOS 
methods here presented). 

At this stage it is important to introduce some potential limitations of 
SDMs. One is the coherency of the spatial patterns, for methods that 
downscale each point independently. This limitation affects all methods 
included in pyClim-SDM except some versions of Analogs (ANA-SYN and 
ANA-VAR), and its impact can be analyzed with the evaluation metrics 
provided by the software, as it varies for each specific case (region, 
dataset, set of predictors, etc). Another one is the multivariate consis
tency, as methods downscale each target variable separately, which also 
affects all method included. As it has been mentioned, the software al
lows to downscale multivariate index directly in order to avoid this 
issue. And finally, different SDMs present different abilities to extrapo
late to a future different climate. Although Fig. 6 (bottom-right) in
dicates that all SDMs can capture FWI extremes with good accuracy, that 
does not guarantee they will behave with the same accuracy in the 
future, so their future behaviors must be analyzed. An important anal
ysis for SDMs is the test on their ability to preserve the signal of change 
given by GCMs averaged over large areas (because they operate in 
different spatial scales). Fig. 7 compares trends given by RAW with 
trends given by all bias corrected SDMs for FWI90p in the dry season 
under the SSP5-8.5 scenario. As it can be seen, many SDMs are incapable 
of reproducing those trends. The same behavior is frequently found in 
other variables with a strong signal of change, such as temperature (not 
shown). But for other variables or indexes it is possible that all SDMs 
preserve trends given by GCMs, so this analysis, which is integrated in 
pyClim-SDM must be carried out before any real application. It should 
be clarified that although differences between trends given by raw GCMs 
and downscaled simulations point to an incapability of the SDM to 
preserve trends, in some cases, a modified trend given by the SDM might 
be more realistic than the raw GCM (see Maraun et al., 2017). Thus, 
although pyClim-SDM produces figures allowing the comparison of 
trends for all the user selected indexes, the user needs to be critic on the 
reliability of raw GCMs trends. 

Finally, we will focus on the method XGB, which has shown a very 
good accuracy in the historical evaluation and preserves trends given by 
GCMs. A method based on decision trees such as XGB cannot produce 
values out of the observed range. And GCMs project a marked increase 
for FWI in the future. Thus, it is unexpected for XGB to preserve trends 
given by GCMs for FWI. Nevertheless, it should be noticed that the trend 
has been analyzed only for FWI90p, i.e., the count of days over a 

threshold which lies inside the observed range. For this application 
example we will show the projected change in FWI90p in the dry season, 
using XGB bias corrected by season with QM, in two temporal horizons 
(2041–2070 and 2071–2100) under SSP1-2.6, SSP2-4.5, SSP3-7.0 and 
SSP5-8.5 scenarios. Fig. 8 shows the change in FWI90p with respect to 
the reference period (do not mistake it with the absolute number of 
days). Let us bear in mind that, being the dry season formed by four 
months (around 120 days), the mean number of days over the 90th 
percentile in the reference period should be around 12 days. The signal 
of change is consistent over the different SSPs and temporal horizons, 
with a more intense increase by the end of the century and by the most 
emissive scenarios (Fig. 8.) While some regions will not see FWI90p 
increased even under the most emissive scenario, other regions will 
experience a significant increase no matter which scenario we end up in. 
The most remarkable result is the one reached for a region in the North 
West, between Honduras and Guatemala, where even for the most 
conservative scenario there is a projected change of more than 20 days, 
and for the other SSPs of 60 to 80 days. This means that the threshold 
that used to be surpassed by 12 out of 120 days in the reference period 
will be surpassed by 72 to 92 days under those scenarios. Such a result 
must be analyzed in terms of robustness too, of course. Thus, Fig. 8 
shows not only the projected change but also the uncertainty given by 
the multi-model ensemble spread. Some regions show higher un
certainties than others. Particularly, the mentioned region presents un
certainties of the same order as the mean signal of change for the less 
emissive scenarios, while for the most emissive ones it does not appear 
to present significant uncertainties. Thus, for the less emissive scenarios, 
although there is an important level of uncertainty associated with the 
models, the mean signal of change appears to be consistent with the 
spatial pattern projected under the other scenarios. And for the most 
emissive scenarios, the spread among models is quite low, so the 
extreme signal of change in that region appears to be very robust. It 
should be noticed that, although the increase on the number of days over 
the 90th percentile is very high in some regions, the 90th percentile is 
not really high itself in those areas (not shown). Thus, those increments 
should not necessarily represent an actual high fire danger. This appli
cation example using the FWI should be understood as an illustrative 
example on how the software can be used and the possibilities it offers, 
not as a comprehensive risk analysis. 

4. Conclusions 

In this paper we have presented a service based on a new software for 
statistical downscaling of climate change projections, pyClim-SDM. This 
service provides the user with a very simple graphical interface and it is 
ready to be used by only defining a few basic settings and preparing 
input data in a standard specific format. The software includes a set of 
state-of-the-art methods belonging to different families, which have been 
evaluated in the test example, showing clear benefits compared to 
simple interpolations. pyClim-SDM is prepared to downscale surface 
daily temperature, precipitation, wind, humidity, and cloud cover. 
Additionally, the software can be applied to any user-defined target 
variable, as it has been shown for a Fire Weather Index. This way, 
multivariable indexes can be tackled as target variables themselves 
instead of being calculated from the downscaled fundamental variables, 
avoiding thus potential intervariable incoherencies. Due to the high 
computational cost of some methods, this software can be run both in 
serial processing and in parallel in a HPC cluster. Although this service 
was originally developed within the Spanish national climate change 
adaptation plan for evaluating and generating downscaled climate 
change projections, it can be easily applied for similar purposes both in 
academic or operational frameworks. Results shown in this paper do not 
intend to conform an exhaustive comparison between the available 
methods or to outline one specific method over the others. Such a 
comparison and evaluation must be made by the user, focusing on his/ 
her specific purposes, and bearing in mind that results can be different 
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for different regions and/or datasets. Although pyClim-SDM can be 
easily used without any specific knowledge in climate or downscaling, 
its use is recommended only for meteorologist/climatologist who can 
assess the choice of methods and predictors, and properly interpret the 
evaluation results. Otherwise, projections generated with this tool could 
be completely wrong. 

In conclusion, pyClim-SDM is a user-friendly software which will 
allow users to evaluate and generate their own data with minimum set 
up, and which has already been used in different projects. 

Data and code availability 

CMIP6 GCMs are available at Earth System Grid Federation nodes 
(https://esgf-node.llnl.gov/search/cmip6/) and at Copernicus Climate 
Data Store (CDS; https://cds.climate.copernicus.eu/). ERA5 reanalysis 
is available at the Meteorological Archival and Retrieval System of the 
ECMWF (MARS; https://confluence.ecmwf.int/display/UDOC/MARS 
+ user + documentation) and at Copernicus CDS The high resolution 
observational grid is available at AEMET website (https://www.aemet. 
es/es/serviciosclimaticos/cambio_climat/datos_diarios?w = 2). And 
pyClim-SDM is available at https://github.com/ahernanzl/pyClim-SDM 
under GNU General Public License v3.0. 
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Modelización del Cambio Climático. AEMET, Spain.  
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análogos. Explicación y Validación. AEMET Nota Técnica 3B, Área de Evaluación y 
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