Hiking accidents and strong northerly winds over Mediterranean Pyrenees

Ramón Pascual and Alfons Callado
Meteorological Center. INM.
Barcelona, Catalonia, Spain

8th European Conference on Applications of Meteorology
El Escorial, October, 2007
Geographical Features (1)

Pallars-Aran Massif (3000 m a.s.l)

Eastern Pyrenees (2900 m a.s.l)

Montseny Massif (1700 m a.s.l)

Catalonian Pyrenees

Mediterranean Sea

Barcelona

8th European Conference on Applications of Meteorology
Cases (1)

In some cases, there is uncertainty in exact date, altitude and location. Sources: Newspapers, village councils, people’s memory, etc.

0) XIX century. *Noucreus* (2800 m a.s.l.). 9 hikers died.
2) 6 March 1944. *Matagalls* (1400 m). 2 skiers died.
7) 4 November 1984. *Puigmal* (2900 m). 1 hiker died. (SW flow)
Cases (2)

Geographical distribution

Cases 0, 3, 4, 5, 6, 7, 8, 9, and 10: Nuria Mountains (Mediterranean Pyrenees). (9 events). Case 1: Moixeró Range (Mediterranean Pyrenees).

Case 11: Aran Valley. Central Pyrenees.
Case 2: Montseny massif. Coastal Ranges.

Monthly and seasonal distribution

November: 2 cases (5 and 7)
December: 4 cases (3, 6, 8 and 10)
January: 0 cases
February: 2 cases (1 and 11)
March: 2 cases (2 and 4)
April: 1 case (9)

Autumn: 2 cases.
Winter: 8 cases.
Spring: 1 case.
Unknown: 1 case.
Cases (3)

Geographical and seasonal distribution

Some determining factors:

Social:
- High number of visitors (easy access with train): Nuria Mountains.
- Nearness to a very populated area (Barcelona).
- Period of holidays (December: Christmas).

Orographical:
- Mountain form and vegetation: Nuria Mountains are soft and rounded but high mountains. Easy hiking. Itineraries over timberline. Alpine meadows.

Meteorological:
- Corner effect in Mediterranean Pyrenees. Frequent winter sudden and strong northerly winds. Strong northerly and westerly winds also affects Montseny massif.
Geographical Features (2)

Nuria Mountains

8th European Conference on Applications of Meteorology
Geographical Features (3)

Cases 3 and 4: Freser Gorges

(Taken from 2100 m a.s.l. October)

Planell (*little plain*) de les Eugues 2000 m

Mountain hut

Path

Path

R. Pascual

8th European Conference on Applications of Meteorology
Geographical Features (4)

Case 6: Torreneules Massif

(Taken from 1200 m a.s.l. April)

Accident Torreneules 2711 m

8th European Conference on Applications of Meteorology
Geographical Features (5)

Case 7: Puigmal Massif

(Taken from 2400 m a.s.l. Autumn)

Puigmal 2910 m

Ll. Catasús

Puigmal 2910 m

Path

8th European Conference on Applications of Meteorology
Geographical Features (6)

Case 9: Canigó Massif

(Taken from 2400 m a.s.l. February) R. Pascual (Taken from 2465 m a.s.l. January 07!!) R. Pascual

8th European Conference on Applications of Meteorology
Accidents characteristics

Probable cause of death:

- Hypothermia
- Fall in a mountain stream (drowned and/or subsequent hypothermia).
- Fall (contusions and/or subsequent hypothermia).
- Avalanche (contusions, hypothermia and/or asphyxiation).

Probable cause of accident:

- Poor visibility conditions → Disorientation, loss, slip, fall
- Strong winds
- Freezing temperatures → Hypothermia, slip, fall

- Change in surface conditions → Slip, fall
- Change in snow cover stability → Avalanche
Weather conditions (1)

General conditions (Estimated from evidence survivors, newspapers, NCEP and ECMWF reanalysis, scarce observations):

- Rapidly changing conditions.
- Sometimes cloudy or overcast sky.
- Snowfall during accident and/or previous days (fresh, loose snow).
- Low or very low temperatures.
- Strong or very strong winds.
- Extremely low wind chill temperatures.
- Poor visibility because snowfall and/or blowing snow.
- Whiteout conditions.

Hazardous weather conditions comparable to blizzard or ground blizzard.

Local name: Torb
Weather conditions (2)

Estimated values of some important variables

<table>
<thead>
<tr>
<th>Case</th>
<th>Temp. (ºC)</th>
<th>Wind Chill (ºC)</th>
<th>300 hPa W (m/s)</th>
<th>700 hPa W (m/s)</th>
<th>850 hPa W (m/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (Feb.)</td>
<td>-10 /-12</td>
<td>-23 /-27</td>
<td>-----------------</td>
<td>-----------------</td>
<td>(NE, SFC)</td>
</tr>
<tr>
<td>2 (Mar.)</td>
<td>-5 /-10</td>
<td>----------------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>(NE, SFC)</td>
</tr>
<tr>
<td>3 (Dec.)</td>
<td>-8 /-11</td>
<td>-20 /-22</td>
<td>53 (NNW)</td>
<td>21 (NW)</td>
<td>14 (NW)</td>
</tr>
<tr>
<td>4 (Mar.)</td>
<td>-1 /-7</td>
<td>-9 /-17</td>
<td>45 (WSW)</td>
<td>20 (W)</td>
<td>10 (W)</td>
</tr>
<tr>
<td>5 (Nov.)</td>
<td>-10</td>
<td>-23</td>
<td>60 (N)</td>
<td>28 (N)</td>
<td>30 (N)</td>
</tr>
<tr>
<td>6 (Dec.)</td>
<td>-4 /-7</td>
<td>-16 /-19</td>
<td>65 (NNW)</td>
<td>40 (NNW)</td>
<td>23 (NW)</td>
</tr>
<tr>
<td>7 (Nov.)</td>
<td>-4</td>
<td>-12</td>
<td>31 (S)</td>
<td>23 (S)</td>
<td>14 (S)</td>
</tr>
<tr>
<td>8 (Dec.)</td>
<td>-14</td>
<td>-27</td>
<td>56 (WNW)</td>
<td>21 (NNW)</td>
<td>24 (N)</td>
</tr>
<tr>
<td>9 (Apr.)</td>
<td>-5 /-14</td>
<td>-14 /-28</td>
<td>54 (NE)</td>
<td>27 (N)</td>
<td>25 (N)</td>
</tr>
<tr>
<td>10 (Dec.)</td>
<td>-4 (-7)</td>
<td>-14 (-19)</td>
<td>60 (NNW)</td>
<td>24 (N)</td>
<td>27 (N)</td>
</tr>
<tr>
<td>11 (Feb.)</td>
<td>-8 /-13</td>
<td>-21 /-28</td>
<td>50 (N)</td>
<td>20 (NNE)</td>
<td>15 (NE)</td>
</tr>
</tbody>
</table>

Event Maximum

- > 20 m/s
- > 40 m/s

8th European Conference on Applications of Meteorology
Synoptic Features (1)

Synoptic situation:

Cold and dry advection. Rapid change of airmass characteristics.

1. Northerly/northeasterly (continental) advection. Cold front ?
2. Northeasterly (continental) adv. Cold front ?
3. Northerly adv. Cold front: NE to SW.
4. Northerly adv. Cold front: N to S.
5. Northerly adv. Cold front: NW to SE.
7. Southwesterly adv. (warm/wet adv.). Cold front: W to E.
8. Northerly adv. Cold front: N to S.
10. Northerly/northeasterly (continental) adv. Warm&cold front: N to S.
11. Northeasterly (continental) adv. Cold front: N to S.
Synoptic Features (2)

Synoptic Features (3)

700 hPa. Z and T. Cases: 7, 8, 9 and 10.

8th European Conference on Applications of Meteorology
Synoptic Features (4)

Synoptic Features (5)

850 hPa. Z and T. Cases: 7, 8, 9 and 10.
Synoptic Features (6)

Cyclones Tracks (500 hPa, SLP). Events.

Map: ECMWF

8th European Conference on Applications of Meteorology
Synoptic Features (7)
Cyclones Tracks (500 hPa, SLP). Events.

General characteristics: Frequent *Mediterranean* cyclogenesis.

Special cases:

1986: *Algerian* Cyclogenesis.

1992: *North Sea low* with fast Southward displacement.

2000: Very fast eastward moving *Atlantic-Iberian* low.
Mesoscale Features (1)

With northerly synoptic flow over Pyrenees:

- Mesoscale pressure field deformation (≤ 850 hPa).
- Generation of enhanced regional wind: Tramontane.
- New air mass cold and dry with upstream blocking in the north side of the Pyrenees.
- Strong temperature/humidity gradient across the Pyrenees.
- Probably density current development affecting Mediterranean Pyrenees.
- Complex orography implies local wind acceleration in favourable places.
Mesoscale Features (2)

700 hPa. V. Cases: 3, 4, 5 and 6.
Mesoscale Features (3)

700 hPa. V. Cases: 7, 8, 9 and 10.
Mesoscale Features (4)

850 hPa. V. Cases: 3, 4, 5 and 6.
Mesoscale Features (5)

850 hPa. V. Cases: 7, 8, 9 and 10.

8th European Conference on Applications of Meteorology
Mesoscale Features (6)

Vertical velocity:

- Cases 3, 4, 5, 6, 8, 9, 10 and 11 show dry air subsiding over the Pyrenees both at 700 hPa and 850 hPa.
- Case 7 (SW flow) shows light upward motion.

Specific humidity and vertical velocity. 26 Nov 1978 @ 18 UTC

Maximum downward motion

Dry air
Climatic context (1)

Objective: To compare atmospheric conditions between the selected days with “normal” conditions.

Variables analysed: Z@500 hPa, T@300, 500, 700, 850 hPa, SLP, Flow direction@ 500, SFC. Source: ERA-40 ECMWF.
Climatic context (2)

Temperature time series over the Pyrenees

Cold period: 1967-71(73)
Identifiable in 4 levels and 3 dates.

T850 Vs T700: good correlation.
Pearson’s corr. ≥ 0.8

Coldest date: 15 Feb.
Warmest date: 31 March.
Climatic context (3)

Climatological synoptic patterns over Pyrenees

More frequent patterns (≥ 10 %):

1: Strong westerly flow (cyclonic)
2: Strong westerly flow (anticyclonic)
4: Northerly advection
5: Northeasterly (European) advection
10: Centred cold low
11: Centred dynamic anticyclone

≥ 30 %
Climatic context (4)

Normal Flow direction over Pyrenees

500 hPa. Higher frequency (3 dates): Flow from 4 and 3 (W/NW; S/SW).
SFC. Higher frequency: Flow from 4 and 1 (W/NW; N/NE) (Dec.)
Flow from 1 and 4 (Feb., Mar.)

8th European Conference on Applications of Meteorology
Climatic context (5)

Flow direction Vs Temperature

<table>
<thead>
<tr>
<th></th>
<th>T300 (° C)</th>
<th>T500 (° C)</th>
<th>T700 (° C)</th>
<th>T850 (° C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>31 DEC</td>
<td>-49.5/ -47.3</td>
<td>-23.0/ -20.9</td>
<td>-7.5/ -5.6</td>
<td>-0.8/ 2.9</td>
</tr>
<tr>
<td>NE/NW</td>
<td>31 DEC MEAN</td>
<td>-48.7</td>
<td>-21.7</td>
<td>-5.3</td>
</tr>
<tr>
<td>15 FEB</td>
<td>-50.5/ -52.0</td>
<td>-22.2/ -21.0</td>
<td>-11.0/ -7.5</td>
<td>-2.5/ 1.5</td>
</tr>
<tr>
<td>NE/NW</td>
<td>15 FEB MEAN</td>
<td>-50.1</td>
<td>-21.8</td>
<td>-7.7</td>
</tr>
<tr>
<td>31 MAR</td>
<td>-49.2/ -46.3</td>
<td>-25.1/ -19.3</td>
<td>-9.3/ -2.7</td>
<td>-0.2/ 5.3</td>
</tr>
<tr>
<td>NE/NW</td>
<td>31 MAR MEAN</td>
<td>-48.4</td>
<td>-21.8</td>
<td>-5.2</td>
</tr>
</tbody>
</table>

Flow from 1(N/NE): Temperature < mean in all levels and dates.
Flow from 4(W/NW): Depending on actual configuration (airmass).

8th European Conference on Applications of Meteorology
Climatic context (6)

Temperature over Pyrenees: Events vs 40 years reanalysis, Monthly means. Mean from November to April.

Events temperature < mean

Exception: Case 7@1984. SW advection.

8th European Conference on Applications of Meteorology
Climatic context (7)

Geographical location of low centers (SL). 30 years.

- 31 DEC: 27 centers
 - North Atlantic lows.
- 31 DEC: 10 centers
 - Mediterranean lows
- 15 FEB: 9 centers
- 3 dates: 29 centers

Map: ECMWF

8th European Conference on Applications of Meteorology
Climatic context (8)

L and H centers location (SL). Northerly flow. 30 years.
Climatic context (9)

L and H centers location (SL). Events.
Climatic context (10)

L and H centers location (500 hPa). Northerly flow. 30 years.
Climatic context (11)

Low and high centers location (500). Events.

Map: ECMWF

8th European Conference on Applications of Meteorology
Mitigation measures

Knowledge of geographical features, accidents characteristics and climatological aspects suggests some mitigation measures to risk reduction:

• More accurate local forecasts and warnings for Mediterranean Pyrenees when northerly synoptic flow it is forecasted.

• Forecasts and warnings should be easy accessible at mountain resorts, tourism offices, etc.

• Local forecasts and warnings should contain explanations about expected environmental conditions as a whole, not only atmospheric elements.

• Education should be improved about mountain meteorology, specifically for mountaineers and visitors to risk areas.

• It should be stressed that environmental conditions can change very rapidly and rise to very dangerous levels.
Thank you for your attention

Ramón Pascual
ramonp.bar@inm.es
CMT en Catalunya
INM: www.inm.es

8th European Conference on Applications of Meteorology
El Escorial, October, 2007