Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/20.500.11765/14781
Rigid body motion in viscous flows using the finite element method
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorHerreros, María Isabeles_ES
dc.contributor.authorLigüérzana Rodríguez, Sergioes_ES
dc.date.accessioned2023-07-24T08:12:49Z-
dc.date.available2023-07-24T08:12:49Z-
dc.date.issued2020-
dc.identifier.citationPhysics of Fluids. 2020, 32(12), 123311es_ES
dc.identifier.issn1070-6631-
dc.identifier.issn1089-7666-
dc.identifier.urihttp://hdl.handle.net/20.500.11765/14781-
dc.description.abstractA new model for the numerical simulation of a rigid body moving in a viscous fluid flow using the finite element method is presented. One of the most interesting features of this approach is the small computational effort required to solve the motion of the rigid body, comparable to a pure fluid solver. The model is based on the idea of extending the fluid velocity inside the rigid body and solving the flow equations with a penalty term to enforce rigid motion inside the solid. In order to get the velocity field in the fluid domain, the Navier–Stokes equations for an incompressible viscous flow are solved using a fractional-step procedure combined with the two-step Taylor–Galerkin algorithm for the fractional linear momentum. Once the velocity field in the fluid domain is computed, calculation of the rigid motion is obtained by averaging translation and angular velocities over the solid. One of the main challenges when dealing with the fluid–solid interaction is the proper modeling of the interface that separates the solid moving mass from the viscous fluid. In this work, the combination of the level set technique and the two-step Taylor–Galerkin algorithm for tracking the fluid–solid interface is proposed. The characteristics exhibited by the two-step Taylor–Galerkin, minimizing oscillations and numerical diffusion, make this method suitable to accurately advect the solid domain, avoiding distortions at its boundaries and, thus, preserving the initial size and shape of the rigid body. The proposed model has been validated against empirical solutions, experimental data, and numerical simulations found in the literature. In all tested cases, the numerical results have shown to be accurate, proving the potential of the proposed model as a valuable tool for the numerical analysis of the fluid–solid interaction.es_ES
dc.language.isoenges_ES
dc.publisherAmerican Institute of Physicses_ES
dc.rightsLicencia CC: Reconocimiento–NoComercial–SinObraDerivada CC BY-NC-NDes_ES
dc.subjectRigid body dynamicses_ES
dc.subjectNumerical methodses_ES
dc.subjectFinite-element analysises_ES
dc.subjectComputational fluid dynamicses_ES
dc.subjectLiquid solid interfaceses_ES
dc.subjectNavier Stokes equationses_ES
dc.subjectViscous liquides_ES
dc.titleRigid body motion in viscous flows using the finite element methodes_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherversionhttps://doi.org/10.1063/5.0029242es_ES
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses_ES
Colecciones: Artículos científicos 2019-2022


Ficheros en este ítem:
  Fichero Descripción Tamaño Formato  
PF_Herreros_2020.pdf
3,2 MBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro sencillo del ítem



Los ítems de Arcimis están protegidos por una Licencia Creative Commons, salvo que se indique lo contrario.

Repositorio Arcimis
Nota Legal Contacto y sugerencias