Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/20.500.11765/11657
The 11 year solar cycle signal in transient simulations from the Whole Atmosphere Community Climate Model
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorChiodo, Gabrieles_ES
dc.contributor.authorCalvo, Nataliaes_ES
dc.contributor.authorMarsh, Daniel R.es_ES
dc.contributor.authorGarcía-Herrera, Ricardoes_ES
dc.date.accessioned2020-04-23T08:31:42Z-
dc.date.available2020-04-23T08:31:42Z-
dc.date.issued2012-
dc.identifier.citationJournal of Geophysical Research: Atmospheres. 2012, 117(D6), p. 1-21es_ES
dc.identifier.issn2169-897X-
dc.identifier.issn2169-8996-
dc.identifier.urihttp://hdl.handle.net/20.500.11765/11657-
dc.description.abstractThe atmospheric response to the 11 year solar cycle (SC) and its combination with the quasi-biennal oscillation (QBO) are analyzed in four simulations of the Whole Atmosphere Community Climate Model version 3.5 (WACCM3.5), which were performed with observed sea surface temperatures, volcanic eruptions, greenhouse gases, and a nudged QBO. The analysis focuses on the annual mean response of the model to the SC and on the evolution of the solar signal during the Northern Hemispheric winter. WACCM3.5 simulates a significantly warmer stratosphere under solar maximum conditions compared to solar minimum. The vertical structure of the signal in temperature and ozone at low latitudes agrees with observations better than previous versions of the model. The temperature and wind response in the extratropics is more uncertain because of its seasonal dependence and the large dynamical variability of the polar vortex. However, all four simulations reproduce the observed downward propagation of zonal wind anomalies from the upper stratosphere to the lower stratosphere during boreal winter resulting from solar-induced modulation of the polar night jet and the Brewer-Dobson circulation. Combined QBO-SC effects in the extratropics are consistent with observations, but they are not robust across the ensemble members. During boreal winter, solar signals are also found in tropospheric circulation and surface temperature. Overall, these results confirm the plausibility of proposed dynamical mechanisms driving the atmospheric response to the SC. The improvement of the model climatology and variability in the polar stratosphere is the basis for the success in simulating the evolution and magnitude of the solar signal.es_ES
dc.language.isoenges_ES
dc.publisherAmerican Geophysical Uniones_ES
dc.subjectSolar cyclees_ES
dc.subjectWhole Atmosphere Community Climate Modeles_ES
dc.subjectQuasi‐biennal oscillationes_ES
dc.titleThe 11 year solar cycle signal in transient simulations from the Whole Atmosphere Community Climate Modeles_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherversionhttps://dx.doi.org/10.1029/2011JD016393es_ES
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses_ES
Colecciones: Artículos científicos 2010-2014


Ficheros en este ítem:
  Fichero Descripción Tamaño Formato  
calvofernandez04.pdf
2,64 MBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro sencillo del ítem



Los ítems de Arcimis están protegidos por una Licencia Creative Commons, salvo que se indique lo contrario.

Repositorio Arcimis
Nota Legal Contacto y sugerencias