Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/20.500.11765/11974
Description of the bias introduced by the transition from Conventional Manual Measurements to Automatic Weather Station through the analysis of European and American parallel datasets (+ Australia, Israel & Kyrgyzstan)
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorAguilar, Enrices_ES
dc.contributor.authorStepanek, Petres_ES
dc.contributor.authorVenema, Victor K. C.es_ES
dc.contributor.authorAuchmann, Renatees_ES
dc.contributor.authorSilva, Fabricio Daniel dos Santoses_ES
dc.contributor.authorEngström, Erikes_ES
dc.contributor.authorGilabert Gallart, Albaes_ES
dc.contributor.authorKretova, Zoiaes_ES
dc.contributor.authorLópez Díaz, José Antonioes_ES
dc.contributor.authorLuna Rico, Yolandaes_ES
dc.contributor.authorOria Rojas, Claraes_ES
dc.contributor.authorProhom Duran, Marces_ES
dc.contributor.authorRasilla, Domingoes_ES
dc.contributor.authorSalvador, Mozares_ES
dc.contributor.authorVertacnik, Gregores_ES
dc.contributor.authorYosefi, Yzhakes_ES
dc.contributor.authorSkansi, Maria de los Milagroses_ES
dc.date.accessioned2020-06-01T08:26:15Z-
dc.date.available2020-06-01T08:26:15Z-
dc.date.issued2015-10-
dc.identifier.citation10th EUMETNET Data Management Workshop (2015)es_ES
dc.identifier.urihttp://hdl.handle.net/20.500.11765/11974-
dc.descriptionPresentación realizada en: 10th EUMETNET Data Management Workshop celebrado en St. Gallen, Suiza, del 28 al 30 de octubre de 2015.es_ES
dc.description.abstractIn this work, we approach the description of the biases introduced by automation in temperature records. This is one of the first studies in the framework of The Parallel Observations Scientific Team (POST). POST is a newly created group of the International Surface Temperature Initiative (ISTI), with the support of the World Meteorological Organization (WMO). The goals of POST (http://www.surfacetemperatures.org/databank/parallel_measurements) are the study of climate data inhomogeneities at the daily and sub-daily level through the compilation and analysis of parallel measurements. Long instrumental climate records are usually affected by non-climatic changes, due to, e.g., relocations and changes in instrumentation, instrument height or data collection and manipulation procedures. These so-called inhomogeneities distort the climate signal and can hamper the assessment of trends and variability. Thus to study climatic changes we need to accurately distinguish non-climatic and climatic signals. The most direct way to study the influence of non-climatic changes on the distribution and to understand the reasons for these biases is the analysis of parallel measurements. A parallel measurement is composed of two or more time series, which measure a climatic variable with two different systems (for example, Montsouris and Stevenson Screens) or in two different locations (for example, city centre and airport). They mimic the situation “before” and “after” a homogeneity break. Most parallel measurements are obtained from collocated or nearly collocated series and can help us to understand the size and shape of different typical sources of inhomogeneity, which affect the climate series. Here we study the transition from conventional temperature manual measurements (CON) to Automatic Weather Stations (AWS), using several parallel datasets distributed over Europe and America. The variables studied in the analysis presented here are daily maximum and minimum temperature. First of all, the metadata – when available - is gathered to gain knowledge on the exact setting of the parallel series. Secondly, the difference (temperature) series AWS-CON are submitted to quality control, to remove obvious errors and inspected to detect internal inhomogeneities and split if necessary. In a third step, each segment is studied to understand the bias introduced by the transition, its seasonality as well as changes in the empirical distributions. When additional variables are available, an attempt is made to study the effects of other variables on the observed biases.es_ES
dc.description.sponsorshipWith the support of Grant CGL2012-32193, Ministerio de Economía y Competitividad, MINECO, España and FP7-SPACE-2013-1 grand 607193, Uncertainties in Ensembles of Regional Reanalyses (UERRA).es_ES
dc.language.isoenges_ES
dc.subjectClimate dataes_ES
dc.subjectClimate recordses_ES
dc.subjectClimatic changeses_ES
dc.titleDescription of the bias introduced by the transition from Conventional Manual Measurements to Automatic Weather Station through the analysis of European and American parallel datasets (+ Australia, Israel & Kyrgyzstan)es_ES
dc.typeinfo:eu-repo/semantics/conferenceObjectes_ES
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses_ES
Colecciones: Otras presentaciones-congresos


Ficheros en este ítem:
  Fichero Descripción Tamaño Formato  
11_Aguilar_Slides_web...
7,77 MBAdobe PDFVista previa
Visualizar/Abrir
Aguilar_Abstract.pdf
72,86 kBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro sencillo del ítem



Los ítems de Arcimis están protegidos por una Licencia Creative Commons, salvo que se indique lo contrario.

Repositorio Arcimis
Nota Legal Contacto y sugerencias