Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/20.500.11765/1379
Evaluation of ‘GLAMEPS’—a proposed multimodel EPS for short range forecasting
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorIversen, Trondes_ES
dc.contributor.authorDeckmyn, Alexes_ES
dc.contributor.authorSantos Burguete, Carloses_ES
dc.contributor.authorSattler, Kaies_ES
dc.contributor.authorBjørnar Bremnes, Johnes_ES
dc.contributor.authorFeddersen, Henrikes_ES
dc.contributor.authorFrogner, Inger-Lisees_ES
dc.date.accessioned2016-03-22T08:32:48Z-
dc.date.available2016-03-22T08:32:48Z-
dc.date.issued2011-
dc.identifier.citationTellus A. 2011, 63(3), p. 513-530es_ES
dc.identifier.issn0280-6495-
dc.identifier.issn1600-0870-
dc.identifier.urihttp://hdl.handle.net/20.500.11765/1379-
dc.description.abstractGrand Limited Area Model Ensemble Prediction System (GLAMEPS) is prepared for pan-European, short-range probabilistic numerical weather prediction of fine synoptic-scale, quasi-hydrostatic atmospheric flows. Four equally sized ensembles are combined: EuroTEPS, a version of the global ECMWF EPS with European target; AladEPS, a downscaling of EuroTEPS using the ALADIN model; HirEPS_K and HirEPS_S, two ensembles using the HIRLAM model nested into EuroTEPS including 3DVar data-assimilation for two control forecasts. A 52-member GLAMEPS thus samples forecast uncertainty by three analysed initial states combined with 12 singular vector-based perturbations, four different models and the stochastic physics tendencies in EuroTEPS. Over a 7-week test period in winter 2008, GLAMEPS produced better results than ECMWF’s EPS with 51 ensemble members. Apart from spatial resolution, the improvement is due to the multimodel combination and to a smaller extent the dedicated EuroTEPS. Ensemble resolution and reliability are both improved. Combining uncalibrated ensembles is seen to produce a better combined ensemble than the best single-model ensemble of the same size, except when one of the single-model ensembles is considerably better than the others. Bayesian Model Averaging improves reliability, but needs further elaboration to account for geographical variations. These conclusions need to be confirmed by long-period evaluations.es_ES
dc.formatapplication/pdf-
dc.language.isoenges_ES
dc.publisherTaylor & Francises_ES
dc.rightsLicencia CC: Reconocimiento CC BYes_ES
dc.subjectEnsemble Prediction System-
dc.subjectGLAMEPSes_ES
dc.subjectShort-range forecastinges_ES
dc.subjectNumerical weather predictiones_ES
dc.titleEvaluation of ‘GLAMEPS’—a proposed multimodel EPS for short range forecastinges_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherversionhttps://dx.doi.org/10.1111/j.1600-0870.2010.00507.xes_ES
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses_ES
Colecciones: Artículos científicos 2010-2014


Ficheros en este ítem:
  Fichero Descripción Tamaño Formato  
15825-46074-1-SM.pdf
811,64 kBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro sencillo del ítem



Los ítems de Arcimis están protegidos por una Licencia Creative Commons, salvo que se indique lo contrario.

Repositorio Arcimis
Nota Legal Contacto y sugerencias