Por favor, use este identificador para citar o enlazar este ítem:
http://hdl.handle.net/20.500.11765/14466
Estimation of NO2 emission strengths over Riyadh and Madrid from space from a combination of wind-assigned anomalies and a machine learning technique
Registro completo de metadatos
Campo DC | Valor | Lengua/Idioma |
---|---|---|
dc.contributor.author | Tu, Qiansi | es_ES |
dc.contributor.author | Hase, Frank | es_ES |
dc.contributor.author | Chen, Zihan | es_ES |
dc.contributor.author | Schneider, Matthias | es_ES |
dc.contributor.author | García Rodríguez, Omaira Elena | es_ES |
dc.contributor.author | Khosrawi, Farahnaz | es_ES |
dc.contributor.author | Chen, Shuo | es_ES |
dc.contributor.author | Blumenstock, Thomas | es_ES |
dc.contributor.author | Liu, Fang | es_ES |
dc.contributor.author | Qin, Kai | es_ES |
dc.contributor.author | Cohen, Jason | es_ES |
dc.contributor.author | He, Qin | es_ES |
dc.contributor.author | Lin, Song | es_ES |
dc.contributor.author | Jiang, Hongyan | es_ES |
dc.contributor.author | Fang, Dianjun | es_ES |
dc.date.accessioned | 2023-04-26T13:29:05Z | - |
dc.date.available | 2023-04-26T13:29:05Z | - |
dc.date.issued | 2023 | - |
dc.identifier.citation | Atmospheric Measurement Techniques. 2023, 16(8), p. 2237–2262 | es_ES |
dc.identifier.issn | 1867-1381 | - |
dc.identifier.issn | 1867-8548 | - |
dc.identifier.uri | http://hdl.handle.net/20.500.11765/14466 | - |
dc.description.abstract | Nitrogen dioxide (NO2) air pollution provides valuable information for quantifying NOx (NOx = NO + NO2) emissions and exposures. This study presents a comprehensive method to estimate average tropospheric NO2 emission strengths derived from 4-year (May 2018–June 2022) TROPOspheric Monitoring Instrument (TROPOMI) observations by combining a wind-assigned anomaly approach and a machine learning (ML) method, the so-called gradient descent algorithm. This combined approach is firstly applied to the Saudi Arabian capital city of Riyadh, as a test site, and yields a total emission rate of 1.09×1026 molec. s−1. The ML-trained anomalies fit very well with the wind-assigned anomalies, with an R2 value of 1.0 and a slope of 0.99. Hotspots of NO2 emissions are apparent at several sites: over a cement plant and power plants as well as over areas along highways. Using the same approach, an emission rate of 1.99×1025 molec. s−1 is estimated in the Madrid metropolitan area, Spain. Both the estimate and spatial pattern are comparable with the Copernicus Atmosphere Monitoring Service (CAMS) inventory. | es_ES |
dc.description.sponsorship | We wish to acknowledge the Joint R&D and Talents Program project, funded by the Qingdao Sino-German Institute of Intelligent Technologies (grant no. kh0100020213319); the Deutsche Forschungsgemeinschaft; and the Open Access Publishing Fund of the Karlsruhe Institute of Technology for their support. | es_ES |
dc.language.iso | eng | es_ES |
dc.publisher | European Geosciences Union | es_ES |
dc.publisher | Copernicus Publications | es_ES |
dc.rights | Licencia CC: Reconocimiento CC BY | es_ES |
dc.subject | Nitrogen dioxide | es_ES |
dc.subject | Air pollution | es_ES |
dc.subject | Wind-assigned anomalies | es_ES |
dc.subject | Machine learning technique | es_ES |
dc.title | Estimation of NO2 emission strengths over Riyadh and Madrid from space from a combination of wind-assigned anomalies and a machine learning technique | es_ES |
dc.type | info:eu-repo/semantics/article | es_ES |
dc.relation.publisherversion | https://doi.org/10.5194/amt-16-2237-2023 | es_ES |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | es_ES |
Colecciones: | Artículos científicos 2023-2026 |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | ||
---|---|---|---|---|---|
amt-16-2237-2023.pdf | 2,03 MB | Adobe PDF | Visualizar/Abrir |
Los ítems de Arcimis están protegidos por una Licencia Creative Commons, salvo que se indique lo contrario.