Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/20.500.11765/14466
Estimation of NO2 emission strengths over Riyadh and Madrid from space from a combination of wind-assigned anomalies and a machine learning technique
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorTu, Qiansies_ES
dc.contributor.authorHase, Frankes_ES
dc.contributor.authorChen, Zihanes_ES
dc.contributor.authorSchneider, Matthiases_ES
dc.contributor.authorGarcía Rodríguez, Omaira Elenaes_ES
dc.contributor.authorKhosrawi, Farahnazes_ES
dc.contributor.authorChen, Shuoes_ES
dc.contributor.authorBlumenstock, Thomases_ES
dc.contributor.authorLiu, Fanges_ES
dc.contributor.authorQin, Kaies_ES
dc.contributor.authorCohen, Jasones_ES
dc.contributor.authorHe, Qines_ES
dc.contributor.authorLin, Songes_ES
dc.contributor.authorJiang, Hongyanes_ES
dc.contributor.authorFang, Dianjunes_ES
dc.date.accessioned2023-04-26T13:29:05Z-
dc.date.available2023-04-26T13:29:05Z-
dc.date.issued2023-
dc.identifier.citationAtmospheric Measurement Techniques. 2023, 16(8), p. 2237–2262es_ES
dc.identifier.issn1867-1381-
dc.identifier.issn1867-8548-
dc.identifier.urihttp://hdl.handle.net/20.500.11765/14466-
dc.description.abstractNitrogen dioxide (NO2) air pollution provides valuable information for quantifying NOx (NOx = NO + NO2) emissions and exposures. This study presents a comprehensive method to estimate average tropospheric NO2 emission strengths derived from 4-year (May 2018–June 2022) TROPOspheric Monitoring Instrument (TROPOMI) observations by combining a wind-assigned anomaly approach and a machine learning (ML) method, the so-called gradient descent algorithm. This combined approach is firstly applied to the Saudi Arabian capital city of Riyadh, as a test site, and yields a total emission rate of 1.09×1026 molec. s−1. The ML-trained anomalies fit very well with the wind-assigned anomalies, with an R2 value of 1.0 and a slope of 0.99. Hotspots of NO2 emissions are apparent at several sites: over a cement plant and power plants as well as over areas along highways. Using the same approach, an emission rate of 1.99×1025 molec. s−1 is estimated in the Madrid metropolitan area, Spain. Both the estimate and spatial pattern are comparable with the Copernicus Atmosphere Monitoring Service (CAMS) inventory.es_ES
dc.description.sponsorshipWe wish to acknowledge the Joint R&D and Talents Program project, funded by the Qingdao Sino-German Institute of Intelligent Technologies (grant no. kh0100020213319); the Deutsche Forschungsgemeinschaft; and the Open Access Publishing Fund of the Karlsruhe Institute of Technology for their support.es_ES
dc.language.isoenges_ES
dc.publisherEuropean Geosciences Uniones_ES
dc.publisherCopernicus Publicationses_ES
dc.rightsLicencia CC: Reconocimiento CC BYes_ES
dc.subjectNitrogen dioxidees_ES
dc.subjectAir pollutiones_ES
dc.subjectWind-assigned anomalieses_ES
dc.subjectMachine learning techniquees_ES
dc.titleEstimation of NO2 emission strengths over Riyadh and Madrid from space from a combination of wind-assigned anomalies and a machine learning techniquees_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherversionhttps://doi.org/10.5194/amt-16-2237-2023es_ES
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses_ES
Colecciones: Artículos científicos 2023-2026


Ficheros en este ítem:
  Fichero Descripción Tamaño Formato  
amt-16-2237-2023.pdf
2,03 MBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro sencillo del ítem



Los ítems de Arcimis están protegidos por una Licencia Creative Commons, salvo que se indique lo contrario.

Repositorio Arcimis
Nota Legal Contacto y sugerencias