Please use this identifier to cite or link to this item:
http://hdl.handle.net/20.500.11765/15307
Aerosol properties derived from ground-based Fourier transform spectra within the COllaborative Carbon Column Observing Network
Title: | Aerosol properties derived from ground-based Fourier transform spectra within the COllaborative Carbon Column Observing Network |
Authors: | Álvarez, Óscar; Barreto Velasco, África
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Keywords: | Fourier transform infrared; Spectrometer; Atmospheric aerosols; COCCON FTIR spectrometry |
Issue Date: | 2023 |
Publisher: | European Geosciences Union; Copernicus Publications |
Citation: | Atmospheric Measurement Techniques. 2023, 16(20), 4861–4884 |
Publisher version: | https://doi.org/10.5194/amt-16-4861-2023 |
Abstract: | Fourier transform infrared (FTIR) spectroscopy is particularly relevant for climate studies due to its ability to provide information on both fine absorption structures (i.e. trace gases) and broadband continuum signatures (i.e. aerosols or water continuum) across the entire infrared (IR) domain. In this context, this study assesses the capability of the portable and compact EM27/SUN spectrometer, used within the research infrastructure COCCON (COllaborative Carbon Column Observing Network), to retrieve spectral aerosol properties from low-resolution FTIR solar absorption spectra (0.5 cm−1 ). The study focuses on the retrieval of aerosol optical depth (AOD) and its spectral dependence in the 873–2314 nm spectral range from COCCON measurements at the subtropical high-mountain Izaña Observatory (IZO, Tenerife, Spain), which were coincidentally carried out with standard sun photometry within the Aerosol Robotic Network (AERONET) in the 3-year period from December 2019 to September 2022. |
Sponsorship : | This research has been supported by the European Community Research Infrastructure Action under the ACTRIS grant (grant no. 871115), the Ministerio de Economía y Competitividad of Spain through the project SYNERA (grant no. PID2020-521-118793GA-I00), and the European Metrology Programme for Innovation and Research (EMPIR) within the joint research project EMPIR 19ENV04 MAPP. The EMPIR is jointly funded by the EMPIR-participating countries within EURAMET and the European Union. |
URI: | http://hdl.handle.net/20.500.11765/15307 |
ISSN: | 1867-1381 1867-8548 |
Appears in Collections: | Artículos científicos 2023-2026 |
Files in This Item:
File | Description | Size | Format | ||
---|---|---|---|---|---|
![]() | AMT_Alvarez_2023.pdf | 3,46 MB | Adobe PDF | ![]() View/Open |
Items in Arcimis are protected by Creative Commons License, unless otherwise indicated.
