Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/20.500.11765/15629
Assessment of Dust Size Retrievals Based on AERONET: A Case Study of Radiative Closure From Visible‐Near‐ Infrared to Thermal Infrared
Título : Assessment of Dust Size Retrievals Based on AERONET: A Case Study of Radiative Closure From Visible‐Near‐ Infrared to Thermal Infrared
Autor : Zheng, JianyuZhang, ZhiboDeSouza-Machado, SergioRyder, Claire L.Garnier, AnneDi Mauro, BiagioYang, PingWelton, Ellsworth J.Yu, HongbinBarreto Velasco, África ORCID RESEARCHERID SCOPUSID Autor AEMETYela González, Margarita
Palabras clave : Dust particles; Climate impacts; VIS-NIR; AERONET
Fecha de publicación : 2024
Editor: Wiley Open Access; American Geophysical Union
Citación : Geophysical Research Letters. 2024, 51(4), e2023GL106808
Versión del editor: https://doi.org/10.1029/2023GL106808
Resumen : Super-coarse dust particles (diameters >10 μm) are evidenced to be more abundant in the atmosphere than model estimates and contribute significantly to the dust climate impacts. Since super-coarse dust accounts for less dust extinction in the visible-to-near-infrared (VIS-NIR) than in the thermal infrared (TIR) spectral regime, they are suspected to be underestimated by remote sensing instruments operates only in VIS-NIR, including Aerosol Robotic Networks (AERONET), a widely used data set for dust model validation. In this study, we perform a radiative closure assessment using the AERONET-retrieved size distribution in comparison with the collocated Atmospheric Infrared Sounder (AIRS) TIR observations with comprehensive uncertainty analysis. The consistently warm bias in the comparisons suggests a potential underestimation of super-coarse dust in the AERONET retrievals due to the limited VIS-NIR sensitivity. An extra super-coarse mode included in the AERONET-retrieved size distribution helps improve the TIR closure without deteriorating the retrieval accuracy in the VIS-NIR.
Patrocinador: J. Zheng, Z. Zhang and A. Garnier are supported by a NASA grant (no. 80NSSC20K0130) from the CALIPSO and CloudSat program managed by David Considine. Z. Zhang also acknowledges funding support from the NSF (AGS-2232138). H. Yu was supported by the CloudSat/CALIPSO program. C. L. Ryder acknowledges funding from NERC IRF Grant NE/M018288/1. The computations in this study were performed at the UMBC High Performance Computing Facility (HPCF). The facility is supported by the US National Science Foundation through the MRI program (Grants CNS-0821258 and CNS-1228778) and the SCREMS program (Grant DMS-0821311), with substantial support from UMBC. We thank NASA for providing the AIRS, CLIMCAPS and MODIS data, which are publicly available at https://disc.gsfc.nasa.gov/ and https://ladsweb.modaps.eosdis.nasa.gov/.
URI : http://hdl.handle.net/20.500.11765/15629
ISSN : 0094-8276
1944-8007
Colecciones: Artículos científicos 2023-2026


Ficheros en este ítem:
  Fichero Descripción Tamaño Formato  
GRL_Zheng_2024.pdf
1,08 MBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo del ítem



Los ítems de Arcimis están protegidos por una Licencia Creative Commons, salvo que se indique lo contrario.

Repositorio Arcimis
Nota Legal Contacto y sugerencias