Por favor, use este identificador para citar o enlazar este ítem:
http://hdl.handle.net/20.500.11765/16119
A neural network to retrieve cloud cover from all-sky cameras: A case of study over Antarctica
Registro completo de metadatos
Campo DC | Valor | Lengua/Idioma |
---|---|---|
dc.contributor.author | González-Fernández, Daniel | es_ES |
dc.contributor.author | Román, Roberto | es_ES |
dc.contributor.author | Antuña-Sánchez, Juan Carlos | es_ES |
dc.contributor.author | Cachorro, Victoria E. | es_ES |
dc.contributor.author | Copes, Gustavo | es_ES |
dc.contributor.author | Herrero-Anta, Sara | es_ES |
dc.contributor.author | Herrero del Barrio, Celia | es_ES |
dc.contributor.author | Barreto Velasco, África | es_ES |
dc.contributor.author | González, Ramiro | es_ES |
dc.contributor.author | Ramos López, Ramón | es_ES |
dc.contributor.author | Toledano, Carlos | es_ES |
dc.contributor.author | Calle, Abel | es_ES |
dc.contributor.author | Frutos Baraja, Ángel Máximo de | es_ES |
dc.date.accessioned | 2024-09-04T09:03:03Z | - |
dc.date.available | 2024-09-04T09:03:03Z | - |
dc.date.issued | 2024 | - |
dc.identifier.citation | Quarterly Journal of the Royal Meteorological Society. 2024, Early View | es_ES |
dc.identifier.issn | 0035-9009 | - |
dc.identifier.issn | 1477-870X | - |
dc.identifier.uri | http://hdl.handle.net/20.500.11765/16119 | - |
dc.description.abstract | We present a new model based on a convolutional neural network (CNN) to predict daytime cloud cover (CC) from sky images captured by all-sky cameras, which is called CNN-CC. A total of 49,016 daytime sky images, recorded at different Spanish locations (Valladolid, La Palma, and Izaña) from two different all-sky camera types, are manually classified into different CC (oktas) values by trained researchers. Subsequently, the images are randomly split into a training set and a test set to validate the model. The CC values predicted by the CNN-CC model are compared with the observations made by trained people on the test set, which serve as reference. | es_ES |
dc.description.sponsorship | The research has been supported by the Ministeriode Ciencia e Innovación (MICINN), with Grant no.PID2021-127588OB-I00, and the Junta of Castilla y León (JCyL) with Grant no. VA227P20. This work ispart of the project TED2021-131211B-I00 funded byMCIN/AEI/10.13039/501100011033 and the EuropeanUnion, “NextGenerationEU”/PRTR. | es_ES |
dc.language.iso | eng | es_ES |
dc.publisher | Wiley | es_ES |
dc.publisher | Royal Meteorological Society | es_ES |
dc.rights | Licencia CC: Reconocimiento–NoComercial–SinObraDerivada CC BY-NC-ND | es_ES |
dc.subject | AI | es_ES |
dc.subject | All-sky camera | es_ES |
dc.subject | Antarctic | es_ES |
dc.subject | Convolutional neural network | es_ES |
dc.subject | Cloud cover | es_ES |
dc.subject | Image identification | es_ES |
dc.title | A neural network to retrieve cloud cover from all-sky cameras: A case of study over Antarctica | es_ES |
dc.type | info:eu-repo/semantics/article | es_ES |
dc.relation.publisherversion | https://doi.org/10.1002/qj.4834 | es_ES |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | es_ES |
Colecciones: | Artículos científicos 2023-2026 |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | ||
---|---|---|---|---|---|
![]() | QJRMS_Gonzalez_2024.pdf | 9,72 MB | Adobe PDF | ![]() Visualizar/Abrir |
Los ítems de Arcimis están protegidos por una Licencia Creative Commons, salvo que se indique lo contrario.
