Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/20.500.11765/16484
Atmospheric new particle formation identifer using longitudinal global particle number size distribution data
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorKecorius, Simonases_ES
dc.contributor.authorMadueño, Leizeles_ES
dc.contributor.authorLovric, Marioes_ES
dc.contributor.authorRacic, Nikolinaes_ES
dc.contributor.authorSchwarz, Maximilianes_ES
dc.contributor.authorCyrys, Josefes_ES
dc.contributor.authorCasquero Vera, Juan Andréses_ES
dc.contributor.authorAlados Arboledas, Lucases_ES
dc.contributor.authorConil, Sébastienes_ES
dc.contributor.authorSciare, Jeanes_ES
dc.contributor.authorOndracek, Jakubes_ES
dc.contributor.authorHallar, Anna Gannetes_ES
dc.contributor.authorGómez Moreno, Francisco Javieres_ES
dc.contributor.authorEllul, Raymondes_ES
dc.contributor.authorKristensson, Adames_ES
dc.contributor.authorSorribas, Mares_ES
dc.contributor.authorKalivitis, Nikoses_ES
dc.contributor.authorMihalopoulos, Nikolaoses_ES
dc.contributor.authorPeters, Annettees_ES
dc.contributor.authorGini, Maria I.es_ES
dc.contributor.authorEleftheriadis, Konstantinoses_ES
dc.contributor.authorVratolis, Stergioses_ES
dc.contributor.authorJeongeun, Kimes_ES
dc.contributor.authorBirmili, Wolframes_ES
dc.contributor.authorBergmans, Benjamines_ES
dc.contributor.authorNikolova, Ninaes_ES
dc.contributor.authorDinoi, Adelaidees_ES
dc.contributor.authorContini, Danielees_ES
dc.contributor.authorMarinoni, Angelaes_ES
dc.contributor.authorAlastuey, Andréses_ES
dc.contributor.authorPetäjä, Tuukkaes_ES
dc.contributor.authorRodríguez González, Sergioes_ES
dc.contributor.authorPicard, Davides_ES
dc.contributor.authorBrem, Benjamin T.es_ES
dc.contributor.authorPriestman, Maxes_ES
dc.contributor.authorGreen, Davides_ES
dc.contributor.authorBeddows, David C. S.es_ES
dc.contributor.authorHarrison, Roy M.es_ES
dc.contributor.authorO'Dowd, Colines_ES
dc.contributor.authorCeburnis, Dariuses_ES
dc.contributor.authorHyvärinen, Antties_ES
dc.contributor.authorHenzing, Bases_ES
dc.contributor.authorCrumeyrolle, Suzannees_ES
dc.contributor.authorPutaud, Jean-Philippees_ES
dc.contributor.authorLaj, Paoloes_ES
dc.contributor.authorWeinhold, Kayes_ES
dc.contributor.authorPlauškaitė, Kristinaes_ES
dc.contributor.authorByčenkienė, Steigvilėes_ES
dc.date.accessioned2025-01-14T11:50:08Z-
dc.date.available2025-01-14T11:50:08Z-
dc.date.issued2024-
dc.identifier.citationScientific Data. 2024, 11, 1239es_ES
dc.identifier.issn2052-4463-
dc.identifier.urihttp://hdl.handle.net/20.500.11765/16484-
dc.description.abstractAtmospheric new particle formation (NPF) is a naturally occurring phenomenon, during which high concentrations of sub-10 nm particles are created through gas to particle conversion. The NPF is observed in multiple environments around the world. Although it has observable infuence onto annual total and ultrafne particle number concentrations (PNC and UFP, respectively), only limited epidemiological studies have investigated whether these particles are associated with adverse health efects. One plausible reason for this limitation may be related to the absence of NPF identifers available in UFP and PNC data sets. Until recently, the regional NPF events were usually identifed manually from particle number size distribution contour plots. Identifcation of NPF across multi-annual and multiple station data sets remained a tedious task. In this work, we introduce a regional NPF identifer, created using an automated, machine learning based algorithm. The regional NPF event tag was created for 65 measurement sites globally, covering the period from 1996 to 2023. The discussed data set can be used in future studies related to regional NPF.es_ES
dc.publisherNaturees_ES
dc.rightsLicencia CC: Reconocimiento CC BYes_ES
dc.subjectAtmospheric new particlees_ES
dc.subjectHealth effectses_ES
dc.subjectMachine learninges_ES
dc.subjectAlgorithmes_ES
dc.titleAtmospheric new particle formation identifer using longitudinal global particle number size distribution dataes_ES
dc.relation.publisherversionhttps://doi.org/10.1038/s41597-024-04079-1es_ES
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses_ES
Colecciones: Artículos científicos 2023-2026




Ficheros en este ítem:
  Fichero Descripción Tamaño Formato  
SD_Kecorius_2024.pdf
2,43 MBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro sencillo del ítem



Los ítems de Arcimis están protegidos por una Licencia Creative Commons, salvo que se indique lo contrario.

Repositorio Arcimis
Nota Legal Contacto y sugerencias