Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/20.500.11765/16714
AERO-MAP: a data compilation and modeling approach to understand spatial variability in fine- and coarse-mode aerosol composition
Título : AERO-MAP: a data compilation and modeling approach to understand spatial variability in fine- and coarse-mode aerosol composition
Autor : Mahowald, Natalie M.Li, LongleiVira, JuliusPrank, MarjeHamilton, Douglas S.Matsui, HitoshiMiller, Ron L.Lu, P. LouisAkyuz, EzgiMeidan, DaphneHess, PeterLihavainen, HeikkiWiedinmyer, ChristineHand, Jenny L.Alaimo, Maria GraziaAlves, CéliaAlastuey, AndrésArtaxo, PauloBarreto Velasco, África ORCID RESEARCHERID SCOPUSID Autor AEMETBarraza, FranciscoBecagli, SilviaCalzolai, GiuliaChellam, ShankararamanChen, YingChuang, PatrickCohen, David D.Colombi, CristinaDiapouli, EvangeliaDongarra, GaetanoEleftheriadis, KonstantinosEngelbrecht, JohannGaly-Lacaux, CorinneGaston, Cassandra J.Gómez, DaríoGonzález Ramos, Yenny ORCID Autor AEMETHarrison, Roy M.Heyes, ChrisHerut, BarakHopke, Philip K.Hüglin, ChristophKanakidou, MariaKertesz, ZsofiaKlimont, ZbigniewKyllönen, KatriinaLambert, FabriceLiu, XiaohongLosno, RemiLucarelli, FrancoMaenhaut, WillyMarticorena, BeatriceMartin, Randall V.Mihalopoulos, NikolaosMorera-Gómez, YasserPaytan, AdinaProspero, Joseph M.Rodríguez González, Sergio ORCID RESEARCHERID Autor AEMETSmichowski, PatriciaVarrica, DanielaWalsh, BrennaWeagle, CrystalZhao, Xi
Palabras clave : Aerosol particles; Solar radiation; Health hazard; AERO-MAP
Fecha de publicación : 2025
Editor: European Geosciences Union; Copernicus Publications
Citación : Atmospheric Chemistry and Physics. 2025, 25(9), p. 4665–4702
Versión del editor: https://doi.org/10.5194/acp-25-4665-2025
Resumen : Aerosol particles are an important part of the Earth climate system, and their concentrations are spatially and temporally heterogeneous, as well as being variable in size and composition. Particles can interact with incoming solar radiation and outgoing longwave radiation, change cloud properties, affect photochemistry, impact surface air quality, change the albedo of snow and ice, and modulate carbon dioxide uptake by the land and ocean. High particulate matter concentrations at the surface represent an important public health hazard. There are substantial data sets describing aerosol particles in the literature or in public health databases, but they have not been compiled for easy use by the climate and air quality modeling community. Here, we present a new compilation of PM2.5 and PM10 surface observations, including measurements of aerosol composition, focusing on the spatial variability across different observational stations. Climate modelers are constantly looking for multiple independent lines of evidence to verify their models, and in situ surface concentration measurements, taken at the level of human settlement, present a valuable source of information about aerosols and their human impacts complementarily to the column averages or integrals often retrieved from satellites. We demonstrate a method for comparing the data sets to outputs from global climate models that are the basis for projections of future climate and large-scale aerosol transport patterns that influence local air quality. Annual trends and seasonal cycles are discussed briefly and are included in the compilation. Overall, most of the planet or even the land fraction does not have sufficient observations of surface concentrations – and, especially, particle composition – to characterize and understand the current distribution of particles. Climate models without ammonium nitrate aerosols omit ∼ 10 % of the globally averaged surface concentration of aerosol particles in both PM2.5 and PM10 size fractions, with up to 50 % of the surface concentrations not being included in some regions. In these regions, climate model aerosol forcing projections are likely to be incorrect as they do not include important trends in short-lived climate forcers.
URI : http://hdl.handle.net/20.500.11765/16714
ISSN : 1680-7316
1680-7324
Colecciones: Artículos científicos 2023-2026




Ficheros en este ítem:
  Fichero Descripción Tamaño Formato  
ACP_Mahowald_2025.pdf
15,69 MBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo del ítem



Los ítems de Arcimis están protegidos por una Licencia Creative Commons, salvo que se indique lo contrario.

Repositorio Arcimis
Nota Legal Contacto y sugerencias