Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/20.500.11765/17219
A hierarchical Bayesian spatio-temporal model for estimating solar radiation from sunshine duration records
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorBegueria, Santiagoes_ES
dc.contributor.authorVicente Serrano, Sergio Martínes_ES
dc.contributor.authorGutiérrez Llorente, José Manueles_ES
dc.contributor.authorBrands, Swenes_ES
dc.contributor.authorGil-Guallar, Marcoses_ES
dc.contributor.authorRoyo-Aranda, Alejandroes_ES
dc.contributor.authorRondón-Velasco, María del Mares_ES
dc.contributor.authorTorralba-Gallego, Antonioes_ES
dc.contributor.authorLuna Rico, Yolandaes_ES
dc.contributor.authorMorata Gasca, Anaes_ES
dc.date.accessioned2025-09-09T07:57:55Z-
dc.date.available2025-09-09T07:57:55Z-
dc.date.issued2026-
dc.identifier.citationRenewable Energy. 2026, 256 (Part C), 123943es_ES
dc.identifier.issn0960-1481-
dc.identifier.issn1879-0682-
dc.identifier.urihttp://hdl.handle.net/20.500.11765/17219-
dc.description.abstractEstimating surface solar radiation is essential for applications in climatology, agriculture, and renewable energy, yet direct radiation measurements are often sparse or unavailable. This study presents a hierarchical Bayesian spatio-temporal model for estimating daily solar radiation from sunshine duration records, using an extended version of the Angström–Prescott (A–P) empirical relationship. The model incorporates fixed effects, elevation-dependent covariates, spatially and temporally structured latent fields, and unstructured random effects, estimated using the Integrated Nested Laplace Approximation (INLA) and the Stochastic Partial Differential Equation (SPDE) approach. Applied to a comprehensive observational dataset covering mainland Spain (1973–2024), the model reveals coherent spatial and seasonal patterns in the A–P coefficients, including a strong altitude effect on the slope parameter and opposing seasonal cycles for the intercept and slope. Validation against observed radiation data shows excellent agreement for most aspects of the distribution, with remaining discrepancies explained by known limitations in the sunshine duration measurements, particularly under overcast conditions. Long-term temporal trends in the slope suggest changes in atmospheric transmissivity, potentially linked to air quality and aerosol dynamics. The proposed framework provides a flexible, computationally efficient, and physically interpretable tool for reconstructing solar radiation fields in data-scarce regions, offering broad relevance for environmental and climate-related applications.es_ES
dc.description.sponsorshipThis research work has been funded by the European Commission – NextGenerationEU (Regulation EU 2020/2094) through CSIC’s Interdisciplinary Thematic Platform ‘‘Clima (PTI Clima) / Development of Operational Climate Services’’, and by Aragón Government through grant E02-20R.es_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rightsLicencia CC: Reconocimiento CC BYes_ES
dc.subjectSolar radiationes_ES
dc.subjectSunshine durationes_ES
dc.subjectAngström–Prescott modeles_ES
dc.subjectHierarchical Bayesian modellinges_ES
dc.subjectSpatio-temporal analysises_ES
dc.subjectIntegrated nested Laplace approximationes_ES
dc.titleA hierarchical Bayesian spatio-temporal model for estimating solar radiation from sunshine duration recordses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherversionhttps://doi.org/10.1016/j.renene.2025.123943es_ES
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses_ES
Colecciones: Artículos científicos 2023-2026


Ficheros en este ítem:
  Fichero Descripción Tamaño Formato  
RE_Begueria_2025.pdf
2,94 MBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro sencillo del ítem



Los ítems de Arcimis están protegidos por una Licencia Creative Commons, salvo que se indique lo contrario.

Repositorio Arcimis
Nota Legal Contacto y sugerencias