Por favor, use este identificador para citar o enlazar este ítem:
http://hdl.handle.net/20.500.11765/3809
Bayesian networks for probabilistic weather prediction
Título : | Bayesian networks for probabilistic weather prediction |
Autor : | Cofiño González, Antonio Santiago; Cano Trueba, Rafael; Sordo, Carmen María; Gutiérrez Llorente, José Manuel |
Palabras clave : | Time series prediction; Bayesian Networks; Acyclic graph; Rainfall forecast; Probabilistic weather prediction |
Fecha de publicación : | 2002 |
Citación : | XV European Conference on Artificial Intelligence (2002) |
Resumen : | Several standard approaches have been introduced for meteorological time series prediction (analog techniques, neural networks, etc.). However, when dealing with multivariate spatially distributed time series (e.g., a network of meteorological stations over the Iberian peninsula) the above methods do not consider all the available information (they consider special independency assumptions to simplify the model). In this work, we introduce Bayesian Networks (BNs) in this framework to model the spatial and temporal dependencies among the different stations using a directed acyclic graph. |
Descripción : | Ponencia presentada en: 15th European Conference on Artificial Intelligence celebrada los días 21-26 de julio en Lyon, Francia |
URI : | http://hdl.handle.net/20.500.11765/3809 |
Colecciones: | Otras actas-congresos |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | ||
---|---|---|---|---|---|
![]() | Ancell 2002_Ancell_EC... | 300,52 kB | Adobe PDF | ![]() Visualizar/Abrir |
Los ítems de Arcimis están protegidos por una Licencia Creative Commons, salvo que se indique lo contrario.
