Please use this identifier to cite or link to this item:
Subtropical trace gas profiles determined by ground-based FTIR spectroscopy at Izaña (28° N, 16° W): Five-year record, error analysis, and comparison with 3-D CTMs [Discussion paper]
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSchneider, Matthiases_ES
dc.contributor.authorBlumenstock, Thomases_ES
dc.contributor.authorChipperfield, M. P.es_ES
dc.contributor.authorHase, Frankes_ES
dc.contributor.authorKouker, W.es_ES
dc.contributor.authorReddmann, T.es_ES
dc.contributor.authorRuhnke, R.es_ES
dc.contributor.authorCuevas Agulló, Emilioes_ES
dc.contributor.authorFischer, H.es_ES
dc.identifier.citationAtmospheric Chemistry and Physics Discussions. 2004, 4, p. 5261–5301es_ES
dc.description.abstractWithin the framework of the NDSC (Network for the Detection of Stratospheric Change) ground-based FTIR solar absorption spectra have been routinely recorded at Izaña Observatory (28° N, 16° W) on Tenerife Island since March 1999. By analyzing the shape of the absorption lines, and their different temperature sensitivities, the vertical distribution of the absorbers can be retrieved. Unique time series of subtropical profiles of O3, HCl, HF, N2O, and CH4 are presented. The effects of both dynamical and chemical annually varying trace gas cycles can be seen in the retrieved profiles. These include enhanced upwelling and photochemistry in summer and a more disturbed atmosphere in winter, which are typical of the subtropical stratosphere. A detailed error analysis has been performed for each profile. The output from two different three-dimensional (3-D) chemical transport models (CTMs), which are forced by ECMWF analyses, are compared to the measured profiles. Both models agree well with the measurements in tracking abrupt variations in the atmospheric structure, e.g. due to tropical streamers, in particular for the lower stratosphere. Simulated and measured profiles also reflect similar dynamical and chemical annual cycles. However, the differences between their mixing ratios clearly exceed the error bars estimated for the measured profiles. Possible reasons for this are discussed.es_ES
dc.description.sponsorshipWe thank the Bundesministerium für Bildung und Forschung via the DLR by contracts 50EE0008 and 50EE0203 for fundinges_ES
dc.publisherEuropean Geosciences Uniones_ES
dc.rightsLicencia CC: Reconocimiento CC BYes_ES
dc.subjectFTIR spectroscopyes_ES
dc.subjectTrace gases_ES
dc.subjectOzone depletiones_ES
dc.subjectGases trazaes_ES
dc.subjectReducción de la capa de ozonoes_ES
dc.titleSubtropical trace gas profiles determined by ground-based FTIR spectroscopy at Izaña (28° N, 16° W): Five-year record, error analysis, and comparison with 3-D CTMs [Discussion paper]es_ES
Appears in Collections:Artículos científicos 2000-2004

Files in This Item:
  File Description SizeFormat 
3,37 MBAdobe PDFThumbnail
Show simple item record

Items in Arcimís are protected by Creative Commons License, unless otherwise indicated.

Arcimís Repository
Nota Legal Contacto y sugerencias