Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/20.500.11765/11686
2018 Atmospheric Motion Vector (AMV): intercomparison study
Título : 2018 Atmospheric Motion Vector (AMV): intercomparison study
Autor : Santek, DavidDworak, RichardNebuda, SharonWanzong, SteveBorde, RégisGenkova, IlianaGarcía Pereda, JavierAutor AEMETGalante Negri, RenatoCarranza, ManuelNonaka, KenichiShimoji, KazukiOh, Soo MinLee, Byung-IlChung, Sung-RaeDaniels, JaimeBresky, Wayne
Palabras clave : Atmospheric Motion Vectors (AMVs); Intercomparison; Himawari; CPTEC/INPE; EUMETSAT; JMA; KMA; NOAA; NWCSAF
Fecha de publicación : 2019
Editor: Multidisciplinary Digital Publishing Institute
Citación : Remote Sensing. 2019, 11(19), 2240
Versión del editor: https://dx.doi.org/10.3390/rs11192240
Resumen : Atmospheric Motion Vectors (AMVs) calculated by six different institutions (Brazil Center for Weather Prediction and Climate Studies/CPTEC/INPE, European Organization for the Exploitation of Meteorological Satellites/EUMETSAT, Japan Meteorological Agency/JMA, Korea Meteorological Administration/KMA, Unites States National Oceanic and Atmospheric Administration/NOAA, and the Satellite Application Facility on Support to Nowcasting and Very short range forecasting/NWCSAF) with JMA’s Himawari-8 satellite data and other common input data are here compared. The comparison is based on two different AMV input datasets, calculated with two different image triplets for 21 July 2016, and the use of a prescribed and a specific configuration. The main results of the study are summarized as follows: (1) the differences in the AMV datasets depend very much on the ‘AMV height assignment’ used and much less on the use of a prescribed or specific configuration; (2) the use of the ‘Common Quality Indicator (CQI)’ has a quantified skill in filtering collocated AMVs for an improved statistical agreement between centers; (3) Among the six AMV operational algorithms verified by this AMV Intercomparison, JMA AMV algorithm has the best overall performance considering all validation metrics, mainly due to its new height assignment method: ‘Optimal estimation method considering the observed infrared radiances, the vertical profile of the Numerical Weather Prediction wind, and the estimated brightness temperature using a radiative transfer model’.
Patrocinador: The “Space Science and Engineering Center” (SSEC) of the “University ofWisconsin-Madison” (UW) was funded to do this research by the “European Organization for the Exploitation of Meteorological Satellites (EUMETSAT)”, through the “Satellite Application Facility on Support to Nowcasting and Very short range forecasting (NWCSAF)” “Visiting Scientist Activity (VSA)” program.
URI : http://hdl.handle.net/20.500.11765/11686
ISSN : 2072-4292
Colecciones: Artículos científicos 2019-2022


Ficheros en este ítem:
  Fichero Descripción Tamaño Formato  
remotesensing-11-0224...
5,2 MBAdobe PDFVista previa
Visualizar/Abrir
remotesensing-11-0224...
64,68 MBZIPVisualizar/Abrir
Mostrar el registro completo del ítem



Los ítems de Arcimis están protegidos por una Licencia Creative Commons, salvo que se indique lo contrario.

Repositorio Arcimis
Nota Legal Contacto y sugerencias