Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/20.500.11765/11729
Improved statistically based retrievals via spatial-spectral data compression for IASI data
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorGarcía Sobrino, Joaquínes_ES
dc.contributor.authorLaparra, Valeroes_ES
dc.contributor.authorOrtega Sagristá, Ricardoes_ES
dc.contributor.authorCalbet, Xavieres_ES
dc.contributor.authorCamps-Valls, Gustaues_ES
dc.date.accessioned2020-05-04T13:14:53Z-
dc.date.available2020-05-04T13:14:53Z-
dc.date.issued2019-
dc.identifier.citationIEEE Transactions on Geoscience and Remote Sensing. 2019, 57(8), p. 5651-5668es_ES
dc.identifier.issn0196-2892-
dc.identifier.urihttp://hdl.handle.net/20.500.11765/11729-
dc.description.abstractIn this paper, we analyze the effect of spatial and spectral compression on the performance of statistically based retrieval. Although the quality of the information is not completely preserved during the coding process, experiments reveal that a certain amount of compression may yield a positive impact on the accuracy of retrievals. We unveil two strategies, both with interesting benefits: either to apply a very high compression, which still maintains the same retrieval performance as that obtained for uncompressed data; or to apply a moderate to high compression, which improves the performance. As a second contribution of this paper, we focus on the origins of these benefits. On the one hand, we show that a certain amount of noise is removed during the compression stage, which benefits the retrievals performance. On the other hand, we analyze the effect of compression on spectral/spatial regularization (smoothing). We quantify the amount of information shared among the spatial neighbors for the different methods and compression ratios. We also propose a simple strategy to specifically exploit spectral and spatial relations and find that, when these relations are taken into account beforehand, the benefits of compression are reduced. These experiments suggest that compression can be understood as an indirect way to regularize the data and exploit spatial neighbors information, which improves the performance of pixelwise statistics-based retrieval algorithms.es_ES
dc.language.isoenges_ES
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)es_ES
dc.subjectInfrared Atmospheric Sounding Interferometer (IASI)es_ES
dc.subjectLossy Compressiones_ES
dc.subjectSpectral Transformses_ES
dc.subjectJPEG 2000es_ES
dc.subjectStatistically Based Retrievales_ES
dc.subjectKernel Methodses_ES
dc.subjectRegressiones_ES
dc.titleImproved statistically based retrievals via spatial-spectral data compression for IASI dataes_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherversionhttps://dx.doi.org/10.1109/TGRS.2019.2901396es_ES
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses_ES
Colecciones: Artículos científicos 2019-2022


Ficheros en este ítem:
  Fichero Descripción Tamaño Formato  
Improved_Statisticall...
1,56 MBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro sencillo del ítem



Los ítems de Arcimis están protegidos por una Licencia Creative Commons, salvo que se indique lo contrario.

Repositorio Arcimis
Nota Legal Contacto y sugerencias