Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/20.500.11765/12608
Precipitation type classification of micro rain radar data using an improved doppler spectral processing methodology
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorGarcía-Benadi, Albertes_ES
dc.contributor.authorBech, Joanes_ES
dc.contributor.authorGonzález Herrero, Sergies_ES
dc.contributor.authorUdina, Mireiaes_ES
dc.contributor.authorCodina, Bernates_ES
dc.contributor.authorGeorgis, Jean-Françoises_ES
dc.date.accessioned2020-12-18T09:36:41Z-
dc.date.available2020-12-18T09:36:41Z-
dc.date.issued2020-
dc.identifier.citationRemote Sensing. 2020, 12(24), 4113es_ES
dc.identifier.issn2072-4292-
dc.identifier.urihttp://hdl.handle.net/20.500.11765/12608-
dc.descriptionThis research was funded by the Spanish Government through projects CGL2015-65627-C3-1-R, CGL2015-65627-C3-2-R (MINECO/FEDER), CGL2016-81828-REDT and RTI2018-098693-B-C32 (AEI/FEDER).es_ES
dc.description.abstractThis paper describes a methodology for processing spectral raw data from Micro Rain Radar (MRR), a K-band vertically pointing Doppler radar designed to observe precipitation profiles. The objective is to provide a set of radar integral parameters and derived variables, including a precipitation type classification. The methodology first includes an improved noise level determination, peak signal detection and Doppler dealiasing, allowing us to consider the upward movements of precipitation particles. A second step computes for each of the height bin radar moments, such as equivalent reflectivity (Ze), average Doppler vertical speed (W), spectral width (σ), the skewness and kurtosis. A third step performs a precipitation type classification for each bin height, considering snow, drizzle, rain, hail, and mixed (rain and snow or graupel). For liquid precipitation types, additional variables are computed, such as liquid water content (LWC), rain rate (RR), or gamma distribution parameters, such as the liquid water content normalized intercept (Nw) or the mean mass-weighted raindrop diameter (Dm) to classify stratiform or convective rainfall regimes. The methodology is applied to data recorded at the Eastern Pyrenees mountains (NE Spain), first with a detailed case study where results are compared with different instruments and, finally, with a 32-day analysis where the hydrometeor classification is compared with co-located Parsivel disdrometer precipitation-type present weather observations. The hydrometeor classification is evaluated with contingency table scores, including Probability of Detection (POD), False Alarm Rate (FAR), and Odds Ratio Skill Score (ORSS). The results indicate a very good capacity of Method3 to distinguish rainfall and snow (PODs equal or greater than 0.97), satisfactory results for mixed and drizzle (PODs of 0.79 and 0.69) and acceptable for a reduced number of hail cases (0.55), with relatively low rate of false alarms and good skill compared to random chance in all cases (FAR < 0.30, ORSS > 0.70). The methodology is available as a Python language program called RaProM at the public github repository.es_ES
dc.language.isoenges_ES
dc.publisherMultidisciplinary Digital Publishing Institutees_ES
dc.rightsLicencia CC: Reconocimiento CC BYes_ES
dc.subjectDoppler radares_ES
dc.subjectNoise leveles_ES
dc.subjectPrecipitation type classificationes_ES
dc.subjectRainfall parameterses_ES
dc.subjectSpectral processinges_ES
dc.titlePrecipitation type classification of micro rain radar data using an improved doppler spectral processing methodologyes_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherversionhttps://dx.doi.org/10.3390/rs12244113es_ES
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses_ES
Colecciones: Artículos científicos 2019-2022


Ficheros en este ítem:
  Fichero Descripción Tamaño Formato  
remotesensing-12-0411...
3,61 MBAdobe PDFVista previa
Visualizar/Abrir
remotesensing-12-0411...
473,77 kBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro sencillo del ítem



Los ítems de Arcimis están protegidos por una Licencia Creative Commons, salvo que se indique lo contrario.

Repositorio Arcimis
Nota Legal Contacto y sugerencias