Please use this identifier to cite or link to this item: http://hdl.handle.net/20.500.11765/12683
Effect of vertical profile of aerosols on the local shortwave radiative forcing estimation
Title: Effect of vertical profile of aerosols on the local shortwave radiative forcing estimation
Authors: Molero Menéndez, FranciscoFernández García, Alfonso JavierRevuelta, María Aránzazu ORCID RESEARCHERID Martínez Marco, Isabel ORCID SCOPUSID Autor AEMETPujadas, ManuelArtíñano, Begoña
Keywords: Aerosol; Radiative forcing; Lidar; Vertical profile; LibRadTran
Issue Date: 2021
Publisher: Multidisciplinary Digital Publishing Institute
Citation: Atmosphere. 2020, 12(2), 187
Publisher version: https://dx.doi.org/10.3390/atmos12020187
Abstract: In this work, the effect of the aerosol vertical distribution on the local shortwave aerosol radiative forcing is studied. We computed the radiative forcing at the top and bottom of the atmosphere between 0.2 and 4 microns using the libRadTran package and compared the results with those provided by AERONET (AErosol RObotic NETwork). Lidar measurements were employed to characterize the aerosol vertical profile, and collocated AERONET measurements provided aerosol optical parameters required to calculate its radiative forcing. A good correlation between the calculated radiative forcings and those provide by AERONET, with differences smaller than 1 W m-2 (15% of estimated radiative forcing), is obtained when a gaussian vertical aerosol profile is assumed. Notwithstanding, when a measured aerosol profile is inserted into the model, differences between radiative forcings can vary up to 6.54Wm-2 (15%), with a mean of differences =-0.74±3.06W m-2 at BOA and -3.69Wm-2 (13%), with a mean of differences = -0.27±1.32Wm-2 at TOA due to multiple aerosol layers and aerosol types. These results indicate that accurate information about aerosol vertical distribution must be incorporated in the radiative forcing calculation in order to reduce its uncertainties.
Sponsorship : This research was funded by European Union’s Horizon 2020 research and innovation programme through project ACTRIS-2 (grant 654109), the Spanish Ministry of Economy and Competitivity (CRISOL, CGL2017-85344-R and ACTRIS-ESPAÑA, CGL2017-90884-REDT) and Madrid Regional Government (TIGAS-CM, Y2018/EMT-5177).
URI: http://hdl.handle.net/20.500.11765/12683
ISSN: 2073-4433
Appears in Collections:Artículos científicos 2019-2022


Files in This Item:
  File Description SizeFormat 
atmosphere-12-00187-v...
5,3 MBAdobe PDFThumbnail
View/Open
Show full item record



Items in Arcimis are protected by Creative Commons License, unless otherwise indicated.

Arcimis Repository
Nota Legal Contacto y sugerencias