Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/20.500.11765/12684
Accuracy of Vaisala RS41 and RS92 upper tropospheric humidity compared to satellite hyperspectral infrared measurements
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorSun, Bomines_ES
dc.contributor.authorCalbet, Xavieres_ES
dc.contributor.authorReale, Anthonyes_ES
dc.contributor.authorSchroeder, Stevenes_ES
dc.contributor.authorBali, Manikes_ES
dc.contributor.authorSmith, Ryanes_ES
dc.contributor.authorPettey, Michaeles_ES
dc.date.accessioned2021-02-02T12:58:22Z-
dc.date.available2021-02-02T12:58:22Z-
dc.date.issued2021-
dc.identifier.citationRemote Sensing. 2021, 13(2), 173es_ES
dc.identifier.issn2072-4292-
dc.identifier.urihttp://hdl.handle.net/20.500.11765/12684-
dc.description.abstractRadiosondes are important for calibrating satellite sensors and assessing sounding retrievals. Vaisala RS41 radiosondes have mostly replaced RS92 in the Global Climate Observing System (GCOS) Reference Upper Air Network (GRUAN) and the conventional network. This study assesses RS41 and RS92 upper tropospheric humidity (UTH) accuracy by comparing with Infrared Atmospheric Sounding Interferometer (IASI) upper tropospheric water vapor absorption spectrum measurements. Using single RS41 and RS92 soundings at three GRUAN and DOE Atmospheric Radiation Measurement (ARM) sites and dual RS92/RS41 launches at three additional GRUAN sites, collocated with cloud-free IASI radiances (OBS), we compute Line-by-Line Radiative Transfer Model radiances for radiosonde profiles (CAL). We analyze OBS-CAL differences from 2015 to 2020, for daytime, nighttime, and dusk/dawn separately if data is available, for standard (STD) RS92 and RS41 processing, and RS92 GRUAN Data Processing (GDP; RS41 GDP is in development). We find that daytime RS41 (even without GDP) has ~1% smaller UTH errors than GDP RS92. RS41 may still have a dry bias of 1–1.5% for both daytime and nighttime, and a similar error for nighttime RS92 GDP, while standard RS92 may have a dry bias of 3–4%. These sonde humidity biases are probably upper limits since “cloud-free” scenes could still be cloud contaminated. Radiances computed from European Centre for Medium-Range Weather Forecasts (ECMWF) analyses match better than radiosondes with IASI measurements, perhaps because ECMWF assimilates IASI measurements. Relative differences between RS41 STD and RS92 GDP, or between radiosondes and ECMWF humidity profiles obtained from the radiance analysis, are consistent with their differences obtained directly from the RH measurements.es_ES
dc.description.sponsorshipThis work is supported by NOAA Joint Polar Satellite System (JPSS) NOAA Products Validation System (NPROVS). We thank EUMETSAT’s Nowcasting SAF for partially supporting this study.es_ES
dc.language.isoenges_ES
dc.publisherMultidisciplinary Digital Publishing Institutees_ES
dc.rightsLicencia CC: Reconocimiento CC BYes_ES
dc.subjectRadiosondeses_ES
dc.subjectSatellitees_ES
dc.subjectUpper tropospheric humidityes_ES
dc.subjectInfrared radianceses_ES
dc.subjectRadiative transferes_ES
dc.titleAccuracy of Vaisala RS41 and RS92 upper tropospheric humidity compared to satellite hyperspectral infrared measurementses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherversionhttps://dx.doi.org/10.3390/rs13020173es_ES
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses_ES
Colecciones: Artículos científicos 2019-2022


Ficheros en este ítem:
  Fichero Descripción Tamaño Formato  
remotesensing-13-0017...
3,81 MBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro sencillo del ítem



Los ítems de Arcimis están protegidos por una Licencia Creative Commons, salvo que se indique lo contrario.

Repositorio Arcimis
Nota Legal Contacto y sugerencias