Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/20.500.11765/12706
Conceptualizing the impact of dust-contaminated infrared radiances on data assimilation for numerical weather prediction
Título : Conceptualizing the impact of dust-contaminated infrared radiances on data assimilation for numerical weather prediction
Autor : Marquis, Jared W.Oyola, Mayra I.Campbell, James R.Ruston, Benjamin C.Córdoba-Jabonero, CarmenCuevas Agulló, Emilio ORCID RESEARCHERID SCOPUSID Autor AEMETLewis, Jasper R.Toth, Travis D.Zhang, Jianglong
Palabras clave : Lidars/Lidar observations; Remote sensing; Satellite observations; Soundings; Data assimilation; Aerosols/particulates
Fecha de publicación : 2021
Editor: American Meteorological Society
Citación : Journal of Atmospheric and Oceanic Technology. 2021, 38(2), p. 209–221
Versión del editor: https://dx.doi.org/10.1175/JTECH-D-19-0125.1
Resumen : Numerical weather prediction systems depend on Hyperspectral Infrared Sounder (HIS) data, yet the impacts of dust-contaminated HIS radiances on weather forecasts has not been quantified. To determine the impact of dust aerosol on HIS radiance assimilation, we use a modified radiance assimilation system employing a one-dimensional variational assimilation system (1DVAR) developed under the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT) Numerical Weather Prediction–Satellite Application Facility (NWP-SAF) project, which uses the Radiative Transfer for TOVS (RTTOV). Dust aerosol impacts on analyzed temperature and moisture fields are quantified using synthetic HIS observations from rawinsonde, Micropulse Lidar Network (MPLNET), and Aerosol Robotic Network (AERONET). Specifically, a unit dust aerosol optical depth (AOD) contamination at 550 nm can introduce larger than 2.4 and 8.6 K peak biases in analyzed temperature and dewpoint, respectively, over our test domain. We hypothesize that aerosol observations, or even possibly forecasts from aerosol predication models, may be used operationally to mitigate dust induced temperature and moisture analysis biases through forward radiative transfer modeling.
Patrocinador: This study is supported by the NASA ROSES Science of Terra and Aqua program (T. Lee; 80HQTR18T0085). The MPLNET project is funded by the NASA Radiation Sciences Program and Earth Observing System. MPLNET observations at the Santa Cruz de Tenerife site are supported by the INTA Grant IGE03004.
URI : http://hdl.handle.net/20.500.11765/12706
ISSN : 0739-0572
1520-0426
Colecciones: Artículos científicos 2019-2022


Ficheros en este ítem:
  Fichero Descripción Tamaño Formato  
Conceptualizing_Impac...
1,53 MBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo del ítem



Los ítems de Arcimis están protegidos por una Licencia Creative Commons, salvo que se indique lo contrario.

Repositorio Arcimis
Nota Legal Contacto y sugerencias