Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/20.500.11765/13023
Convection indicator for pre-tactical air traffic flow management using neural networks
Título : Convection indicator for pre-tactical air traffic flow management using neural networks
Autor : Jardines, AnielSoler, ManuelCervantes, AlejandroGarcía-Heras, JavierSimarro Grande, Juan Pablo ORCID SCOPUSID Autor AEMET
Palabras clave : Thunderstorms; Air traffic management; Numerical weather prediction; Satellite images; Machine learning
Fecha de publicación : 2021
Editor: Elsevier
Citación : Machine Learning with Applications. 2021, 5, 100053
Versión del editor: https://doi.org/10.1016/j.mlwa.2021.100053
Resumen : Convective weather is a large source of disruption for air traffic management operations. Being able to predict thunderstorms the day before operations can help traffic managers plan around weather and improve air traffic flow management operations. In this paper, machine learning is applied on data from satellite storm observations and ensemble numerical weather prediction products to detect convective weather 36 h in advance. The learning task is formulated as a binary classification problem and a neural network is trained to predict the occurrence of storms. The neural network results are used to develop a probabilistic based convection indicator capable of outperforming existing convection indicators found in the literature. Lastly, applications of the neural network based indicator in an air traffic management setting are presented.
Patrocinador: financial support of the Spanish Ministry of Science, Innovation and Universities under grant RTI2018-098471-B-C32. The project has received funding from the SESAR Joint Undertaking within the framework of the European Union’s Horizon 2020 research and innovation programme under grant agreement No 891965.
URI : http://hdl.handle.net/20.500.11765/13023
ISSN : 2666-8270
Colecciones: Artículos científicos 2019-2022


Ficheros en este ítem:
  Fichero Descripción Tamaño Formato  
1-s2.0-S2666827021000...
5,43 MBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo del ítem



Los ítems de Arcimis están protegidos por una Licencia Creative Commons, salvo que se indique lo contrario.

Repositorio Arcimis
Nota Legal Contacto y sugerencias