Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/20.500.11765/13117
A new methodology to characterise the radar bright band using doppler spectral moments from vertically pointing radar observations
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorGarcía-Benadi, Albertes_ES
dc.contributor.authorBech, Joanes_ES
dc.contributor.authorGonzález Herrero, Sergies_ES
dc.contributor.authorUdina, Mireiaes_ES
dc.contributor.authorCodina, Bernates_ES
dc.date.accessioned2021-11-08T07:40:56Z-
dc.date.available2021-11-08T07:40:56Z-
dc.date.issued2021-
dc.identifier.citationRemote Sensing. 2021, 13(21), 4323es_ES
dc.identifier.issn2072-4292-
dc.identifier.urihttp://hdl.handle.net/20.500.11765/13117-
dc.description.abstractThe detection and characterisation of the radar Bright Band (BB) are essential for many applications of weather radar quantitative precipitation estimates, such as heavy rainfall surveillance, hydrological modelling or numerical weather prediction data assimilation. This study presents a new technique to detect the radar BB levels (top, peak and bottom) for Doppler radar spectral moments from the vertically pointing radars applied here to a K-band radar, the MRR-Pro (Micro Rain Radar). The methodology includes signal and noise detection and dealiasing schemes to provide realistic vertical Doppler velocities of precipitating hydrometeors, subsequent calculation of Doppler moments and associated parameters and BB detection and characterisation. Retrieved BB properties are compared with the melting level provided by the MRR-Pro manufacturer software and also with the 0 °C levels for both dry-bulb temperature (freezing level) and wet-bulb temperature from co-located radio soundings in 39 days. In addition, a co-located Parsivel disdrometer is used to analyse the equivalent reflectivity of the lowest radar height bins confirming consistent results of the new signal and noise detection scheme. The processing methodology is coded in a Python program called RaProM-Pro which is freely available in the GitHub repository.es_ES
dc.description.sponsorshipThis research was partly funded by the project “Analysis of Precipitation Processes in the Eastern Ebro Subbasin” (WISE-PreP, RTI2018-098693-B-C32, MINECO/FEDER) and theWater Research Institute (IdRA) of the University of Barcelona.es_ES
dc.language.isospaes_ES
dc.publisherMDPIes_ES
dc.rightsLicencia CC: Reconocimiento CC BYes_ES
dc.subjectDoppler radares_ES
dc.subjectBright bandes_ES
dc.subjectMelting leveles_ES
dc.subjectAliasinges_ES
dc.titleA new methodology to characterise the radar bright band using doppler spectral moments from vertically pointing radar observationses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherversionhttps://doi.org/10.3390/rs13214323es_ES
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses_ES
Colecciones: Artículos científicos 2019-2022


Ficheros en este ítem:
  Fichero Descripción Tamaño Formato  
remotesensing-13-0432...
7,42 MBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro sencillo del ítem



Los ítems de Arcimis están protegidos por una Licencia Creative Commons, salvo que se indique lo contrario.

Repositorio Arcimis
Nota Legal Contacto y sugerencias