Por favor, use este identificador para citar o enlazar este ítem:
http://hdl.handle.net/20.500.11765/13439
The global and multi-annual MUSICA IASI {H2O, δD} pair dataset
Título : | The global and multi-annual MUSICA IASI {H2O, δD} pair dataset |
Autor : | Diekmann, Christopher; Schneider, Matthias ; Ertl, Benjamin; Hase, Frank; García Rodríguez, Omaira Elena ; Khosrawi, Farahnaz; Sepúlveda Hernández, Eliezer; Knippertz, Peter; Braesicke, Peter |
Palabras clave : | Radiance measurements; Cycle of Atmospheric water; Isotopologues; Dataset; IASI |
Fecha de publicación : | 2021 |
Editor: | Copernicus Publications |
Citación : | Earth System Science Data. 2021, 13(1), p. 5273–5292 |
Versión del editor: | https://doi.org/10.5194/essd-13-5273-2021 |
Resumen : | We present a global and multi-annual space-borne dataset of tropospheric {H2O, δD} pairs that is based on radiance measurements from the nadir thermal infrared sensor IASI (Infrared Atmospheric Sounding Interferometer) on board the Metop satellites of EUMETSAT (European Organisation for the Exploitation of Meteorological Satellites). This dataset is an a posteriori processed extension of the MUSICA (MUlti-platform remote Sensing of Isotopologues for investigating the Cycle of Atmospheric water) IASI full product dataset as presented in Schneider et al. (2021b). From the independently retrieved H2O and δD proxy states, their a priori settings and constraints, and their error covariances provided by the IASI full product dataset, we generate an optimal estimation product for pairs of H2O and δD. Here, this standard MUSICA method for deriving {H2O, δD} pairs is extended using an a posteriori reduction of the constraints for improving the retrieval sensitivity at dry conditions. |
Patrocinador: | This research has been supported by the Deutsche Forschungsgemeinschaft (grant no. 290612604, project MOTIV and grant no. 416767181, project TEDDY), the European Research Council, FP7 Ideas: European Research Council (MUSICA, grant no. 256961), the Bundesministerium für Bildung und Forschung (ForHLR supercomputer), the Ministerium für Wissenschaft, Forschung und Kunst Baden-Württemberg (ForHLR supercomputer), and the Ministerio de Economía y Competitividad (grant no. CGL2016-80688-P, project INMENSE). |
URI : | http://hdl.handle.net/20.500.11765/13439 |
ISSN : | 1866-3508 1866-3516 |
Colecciones: | Artículos científicos 2019-2022 |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | ||
---|---|---|---|---|---|
essd_13_5273_2021.pdf | 947,78 kB | Adobe PDF | Visualizar/Abrir |
Los ítems de Arcimis están protegidos por una Licencia Creative Commons, salvo que se indique lo contrario.