Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/20.500.11765/13613
A critical view on the suitability of machine learning techniques to downscale climate change projections : illustration for temperature with a toy experiment
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorHernanz Lázaro, Alfonsoes_ES
dc.contributor.authorGarcía Valero, Juan Andréses_ES
dc.contributor.authorDomínguez Alonso, Martaes_ES
dc.contributor.authorRodríguez Camino, Ernestoes_ES
dc.date.accessioned2022-05-11T09:06:16Z-
dc.date.available2022-05-11T09:06:16Z-
dc.date.issued2022-
dc.identifier.citationAtmospheric Science Letters. 2022, e1087es_ES
dc.identifier.issn1530-261X-
dc.identifier.urihttp://hdl.handle.net/20.500.11765/13613-
dc.description.abstractMachine learning is a growing field of research with many applications. It provides a series of techniques able to solve complex nonlinear problems, and that has promoted their application for statistical downscaling. Intercomparison exercises with other classical methods have so far shown promising results. Nevertheless, many evaluation studies of statistical downscaling methods neglect the analysis of their extrapolation capability. In this study, we aim to make a wakeup call to the community about the potential risks of using machine learning for statistical downscaling of climate change projections. We present a set of three toy experiments, applying three commonly used machine learning algorithms, two different implementations of artificial neural networks and a support vector machine, to downscale daily maximum temperature, and comparing them with the classical multiple linear regression. We have tested the four methods in and out of their calibration range, and have found how the three machine learning techniques can perform poorly under extrapolation. Additionally, we have analysed the impact of this extrapolation issue depending on the degree of overlapping between the training and testing datasets, and we have found very different sensitivities for each method and specific implementation.es_ES
dc.language.isoenges_ES
dc.publisherRoyal Meteorological Societyes_ES
dc.publisherWileyes_ES
dc.rightsLicencia CC: Reconocimiento CC BYes_ES
dc.subjectClimate projectionses_ES
dc.subjectEvaluationes_ES
dc.subjectExtrapolationes_ES
dc.subjectNeural networkses_ES
dc.subjectMachine learninges_ES
dc.subjectStatistical downscalinges_ES
dc.titleA critical view on the suitability of machine learning techniques to downscale climate change projections : illustration for temperature with a toy experimentes_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherversionhttps://doi.org/10.1002/asl.1087es_ES
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses_ES
Colecciones: Artículos científicos 2019-2022


Ficheros en este ítem:
  Fichero Descripción Tamaño Formato  
ASL2022_Hernanz.pdf
1,59 MBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro sencillo del ítem



Los ítems de Arcimis están protegidos por una Licencia Creative Commons, salvo que se indique lo contrario.

Repositorio Arcimis
Nota Legal Contacto y sugerencias