Por favor, use este identificador para citar o enlazar este ítem:
http://hdl.handle.net/20.500.11765/13664
Impact of the COVID-19 economic downturn on tropospheric ozone trends: an uncertainty weighted data synthesis for quantifying regional anomalies above Western North America and Europe
Registro completo de metadatos
Campo DC | Valor | Lengua/Idioma |
---|---|---|
dc.contributor.author | Chang, Kai-Lan | es_ES |
dc.contributor.author | Cooper, Owen R. | es_ES |
dc.contributor.author | Gaudel, Audrey | es_ES |
dc.contributor.author | Allaart, Marc | es_ES |
dc.contributor.author | Ancellet, Gerard | es_ES |
dc.contributor.author | Clark, Hannah | es_ES |
dc.contributor.author | Godin-Beekmann, Sophie | es_ES |
dc.contributor.author | Leblanc, Thierry | es_ES |
dc.contributor.author | Van Malderen, Roeland | es_ES |
dc.contributor.author | Nédélec, Philippe | es_ES |
dc.contributor.author | Petropavlovskikh, Irina | es_ES |
dc.contributor.author | Steinbrecht, Wolfgang | es_ES |
dc.contributor.author | Stübi, Rene | es_ES |
dc.contributor.author | Tarasick, David W. | es_ES |
dc.contributor.author | Torres, Carlos | es_ES |
dc.date.accessioned | 2022-05-24T10:03:45Z | - |
dc.date.available | 2022-05-24T10:03:45Z | - |
dc.date.issued | 2022 | - |
dc.identifier.citation | AGU Advances. 2022, 3(2), p. 1-27 | es_ES |
dc.identifier.issn | 2576-604X | - |
dc.identifier.uri | http://hdl.handle.net/20.500.11765/13664 | - |
dc.description.abstract | This study quantifies the association between the COVID-19 economic downturn and 2020 tropospheric ozone anomalies above Europe and western North America, and their impact on long-term trends. Anomaly detection for an atmospheric time series is usually carried out by identifying potentially aberrant data points relative to climatological values. However, detecting ozone anomalies from sparsely sampled ozonesonde profiles (once per week at most sites) is challenging due to ozone's high temporal variability. We first demonstrate the challenges for summarizing regional trends based on independent time series from multiple nearby ozone profiling stations. We then propose a novel regional-scale anomaly detection framework based on generalized additive mixed models, which accounts for the sampling frequency and inherent data uncertainty associated with each vertical profile data set, measured by ozonesondes, lidar or commercial aircraft. This method produces a long-term monthly time series with high vertical resolution that reports ozone anomalies from the surface to the middle-stratosphere under a unified framework, which can be used to quantify the regional-scale ozone anomalies during the COVID-19 economic downturn. | es_ES |
dc.description.sponsorship | This work was supported in part by the NOAA Cooperative Agreement with CIRES, NA17OAR4320101. | es_ES |
dc.language.iso | eng | es_ES |
dc.publisher | Wiley | es_ES |
dc.publisher | American Geophysical Union | es_ES |
dc.rights | Licencia CC: Reconocimiento CC BY | es_ES |
dc.subject | Economic downturn | es_ES |
dc.subject | Tropospheric ozone trends | es_ES |
dc.subject | COVID-19 | es_ES |
dc.subject | Anomalies | es_ES |
dc.title | Impact of the COVID-19 economic downturn on tropospheric ozone trends: an uncertainty weighted data synthesis for quantifying regional anomalies above Western North America and Europe | es_ES |
dc.type | info:eu-repo/semantics/article | es_ES |
dc.relation.publisherversion | https://doi.org/10.1029/2021AV000542 | es_ES |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | es_ES |
Colecciones: | Artículos científicos 2019-2022 |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | ||
---|---|---|---|---|---|
AGU_2022_Chang.pdf | 8,17 MB | Adobe PDF | Visualizar/Abrir |
Los ítems de Arcimis están protegidos por una Licencia Creative Commons, salvo que se indique lo contrario.