Por favor, use este identificador para citar o enlazar este ítem:
http://hdl.handle.net/20.500.11765/13739
Homogenization and Trends Analysis of Monthly Precipitation Series in the Fez-Meknes Region, Morocco
Título : | Homogenization and Trends Analysis of Monthly Precipitation Series in the Fez-Meknes Region, Morocco |
Autor : | Kessabi, Ridouane; Hanchane, Mohamed; Guijarro Pastor, José Antonio ; Krakauer, Nir Y.; Addou, Rachid; Sadiki, Abderrazzak; Belmahi, Mohamed |
Palabras clave : | Homogenization; Climatol; Rainfall series; Morocco; Trend analysis |
Fecha de publicación : | 2022 |
Editor: | MDPI |
Citación : | Climate. 2022, 10(5), 64 |
Versión del editor: | https://doi.org/10.3390/cli10050064 |
Resumen : | High quality and long-term precipitation data are required to study the variability and trends of rainfall and the impact of climate change. In developing countries like Morocco, the quality of climate data collected from various weather stations faces numerous obstacles. This paper presents methods for collecting, correcting, reconstructing, and homogenizing precipitation series of Morocco’s Fez-Meknes region from 1961 to 2019. Data collected from national specialized agencies based on 83 rain gauge stations was processed through an algorithm specially designed for the homogenization of climatic data (Climatol). We applied the Mann-Kendall test and Sen’s slope estimator to raw and homogenized data to calculate rainfall trend magnitudes and significance. The homogenization process allows for the detection of a larger number of stations with statistically significant negative trends with 95% and 90% confidence levels, particularly in the mountain ranges, that threatens the main sources of water in the largest watershed in the country. The regionalization of our rain gauge stations is highlighted and compared to previous studies. The monthly and annual means of raw and homogenized data show minor differences over the three main climate zones of the region. |
URI : | http://hdl.handle.net/20.500.11765/13739 |
ISSN : | 2225-1154 |
Colecciones: | Artículos científicos 2019-2022 |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | ||
---|---|---|---|---|---|
climate_2022_kessabi.pdf | 7,03 MB | Adobe PDF | Visualizar/Abrir |
Los ítems de Arcimis están protegidos por una Licencia Creative Commons, salvo que se indique lo contrario.