Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/20.500.11765/13774
Optimisation technique for improving wind downscaling results by estimating roughness parameters
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorMontero García, Gustavoes_ES
dc.contributor.authorRodríguez, Eduardoes_ES
dc.contributor.authorOliver, Albertes_ES
dc.contributor.authorCalvo Sánchez, Francisco Javieres_ES
dc.contributor.authorEscobar, José Maríaes_ES
dc.contributor.authorMontenegro Armas, Rafaeles_ES
dc.date.accessioned2022-06-08T08:43:51Z-
dc.date.available2022-06-08T08:43:51Z-
dc.date.issued2018-
dc.identifier.citationJournal of Wind Engineering and Industrial Aerodynamics. 2018, 174, p. 411-423es_ES
dc.identifier.issn0167-6105-
dc.identifier.urihttp://hdl.handle.net/20.500.11765/13774-
dc.description.abstractThe characterisation of the aerodynamic roughness length (z0) and the displacement height (d) is critical when modelling the wind field using the log vertical profile. It is known that the values of these parameters depend on land coverage and weather conditions. Thus, many authors have studied their relationship, providing typical values for each land cover. In this paper, we have performed a comprehensive literature review to collect the intervals of z0 and d values for each land coverage. Using these intervals, we estimate their values using an optimisation technique that improves the results of a downscaling wind model. The downscaling model is a 3D adaptive, mass-consistent finite element model (Wind3D) that takes values from the HARMONIE-AROME or ECMWF mesoscale numerical weather prediction models. The optimisation is carried out by a memetic algorithm that combines the Differential Evolution method, a rebirth operator and the L-BFGS-B algorithm. The fitness function to be minimised is the root mean square error (RMSE) against observed wind data. This fast procedure allows updating the aerodynamic parameters for any weather condition. Numerical experiments have been carried out to show the performance of the methodology.es_ES
dc.description.sponsorshipThis work has been supported by the Spanish Government, "Secretaría de Estado de Investigación, Desarrollo e Innovación", "Ministerio de Economía y Competitividad", and FEDER, grant contract: CTM2014-55014-C3-1-R.es_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rightsLicencia CC: Reconocimiento–NoComercial–SinObraDerivada CC BY-NC-NDes_ES
dc.subjectECMWF modeles_ES
dc.subjectWind3Des_ES
dc.subjectALADIN-HIRLAM HARMONIE-AROME modeles_ES
dc.subjectRoughness lengthes_ES
dc.subjectDownscaling wind field modelses_ES
dc.titleOptimisation technique for improving wind downscaling results by estimating roughness parameterses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherversionhttps://doi.org/10.1016/j.jweia.2018.01.011es_ES
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses_ES
Colecciones: Artículos científicos 2015-2018


Ficheros en este ítem:
  Fichero Descripción Tamaño Formato  
Preprint2018_Montero.pdf
2,04 MBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro sencillo del ítem



Los ítems de Arcimis están protegidos por una Licencia Creative Commons, salvo que se indique lo contrario.

Repositorio Arcimis
Nota Legal Contacto y sugerencias