Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/20.500.11765/13919
Climate Services Toolbox (CSTools) v4.0: from climate forecasts to climate forecast information
Título : Climate Services Toolbox (CSTools) v4.0: from climate forecasts to climate forecast information
Autor : Pérez Zanón, NúriaCaron, Louis-PhilippeTerzago, SilviaSchaeybroeck, Bert VanLledó, LlorençManubens, NicolauRoulin, EmmanuelÁlvarez-Castro, CarmenBatté, LaurianeBretonnière, Pierre-AntoineCorti, SusannaDelgado Torres, CarlosDomínguez Alonso, Marta ORCID Autor AEMETFabiano, FedericoGiuntoli, IgnazioHardenberg, Jost vonSánchez García, Eroteida ORCID RESEARCHERID Autor AEMETTorralba, VerónicaVerfaillie, Deborah
Palabras clave : Climate forecast data; Climate Services Toolbox; Climate information; Climate data
Fecha de publicación : 2022
Editor: European Geosciences Union; Copernicus Publications
Citación : Geoscientific Model Development. 2022, 15(15), 6115–6142
Versión del editor: https://doi.org/10.5194/gmd-15-6115-2022
Resumen : Despite the wealth of existing climate forecast data, only a small part is effectively exploited for sectoral applications. A major cause of this is the lack of integrated tools that allow the translation of data into useful and skillful climate information. This barrier is addressed through the development of an R package. Climate Services Toolbox (CSTools) is an easy-to-use toolbox designed and built to assess and improve the quality of climate forecasts for seasonal to multi-annual scales. The package contains process-based, state-of-the-art methods for forecast calibration, bias correction, statistical and stochastic downscaling, optimal forecast combination, and multivariate verification, as well as basic and advanced tools to obtain tailored products. Due to the modular design of the toolbox in individual functions, the users can develop their own post-processing chain of functions, as shown in the use cases presented in this paper, including the analysis of an extreme wind speed event, the generation of seasonal forecasts of snow depth based on the SNOWPACK model, and the post-processing of temperature and precipitation data to be used as input in impact models.
Patrocinador: This research has been supported by the Horizon 2020 (S2S4E; grant no. 776787), EUCP (grant no. 776613), ERA4CS (grant no. 690462), and the Ministerio de Ciencia e Innovación (grant no. FPI PRE2019-088646).
URI : http://hdl.handle.net/20.500.11765/13919
ISSN : 1991-959X
1991-9603
Colecciones: Artículos científicos 2019-2022


Ficheros en este ítem:
  Fichero Descripción Tamaño Formato  
GMD_Perez_2022.pdf
13,61 MBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo del ítem



Los ítems de Arcimis están protegidos por una Licencia Creative Commons, salvo que se indique lo contrario.

Repositorio Arcimis
Nota Legal Contacto y sugerencias