Por favor, use este identificador para citar o enlazar este ítem:
http://hdl.handle.net/20.500.11765/14304
Quantification of CH4 emissions from waste disposal sites near the city of Madrid using ground- and space-based observations of COCCON, TROPOMI and IASI
Título : | Quantification of CH4 emissions from waste disposal sites near the city of Madrid using ground- and space-based observations of COCCON, TROPOMI and IASI |
Autor : | Tu, Qiansi; Hase, Frank; Schneider, Matthias ; García Rodríguez, Omaira Elena ; Blumenstock, Thomas; Borsdorff, Tobias; Frey, Matthias; Khosrawi, Farahnaz; Lorente, Alba; Alberti, Carlos; Bustos Seguela, Juan José de ; Butz, André; Carreño Corbella, Virgilio ; Cuevas Agulló, Emilio ; Curcoll, Roger; Diekmann, Christopher; Dubravica, Darko; Ertl, Benjamin; Estruch, Carme; León-Luis, Sergio Fabián ; Marrero, Carlos ; Morguí, Josep Anton; Ramos López, Ramón ; Scharun, Christian; Schneider, Carsten; Sepúlveda Hernández, Eliezer; Toledano, Carlos; Torres, Carlos |
Palabras clave : | Carbon Column Observing Network; Tropospheric Monitoring Instrument; Infrared Atmospheric Sounding Interferometer; reenhouse gases emissions; Remote sensing; Methane |
Fecha de publicación : | 2022 |
Editor: | European Geosciences Union |
Citación : | Atmospheric Chemistry and Physics. 2022, 22, p. 295–317 |
Versión del editor: | https://doi.org/10.5194/acp-22-295-2022 |
Resumen : | We use different methane ground- and space-based remote sensing data sets for investigating the emission strength of three waste disposal sites close to Madrid. We present a method that uses wind-assigned anomalies for deriving emission strengths from satellite data and estimating their uncertainty to 9–14 %. The emission strengths estimated from the remote sensing data sets are significantly larger than the values published in the official register. |
Patrocinador: | This research has been supported by the European Space Agency (COCCON-PROCEEDS and COCCONPROCEEDS II, grant no. ESA-IPL-POELG-cl-LE-2015-1129), the Ministerio de Economía y Competitividad (INMENSE project, grant no. CGL2016-80688-P), the Deutsche Forschungsgemeinschaft (project MOTIV, ID 290612604; and project TEDDY, ID 416767181). |
URI : | http://hdl.handle.net/20.500.11765/14304 |
ISSN : | 1680-7316 1680-7324 |
Colecciones: | Artículos científicos 2019-2022 |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | ||
---|---|---|---|---|---|
ACP_Tu_2022_compresse... | 1,27 MB | Adobe PDF | Visualizar/Abrir |
Los ítems de Arcimis están protegidos por una Licencia Creative Commons, salvo que se indique lo contrario.