Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/20.500.11765/14305
Estimation of NO2 emission strengths over Riyadh and Madrid from space from a combination of wind-assigned anomalies and machine learning technique [Discussion paper]
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorTu, Qiansies_ES
dc.contributor.authorHase, Frankes_ES
dc.contributor.authorChen, Zihanes_ES
dc.contributor.authorSchneider, Matthiases_ES
dc.contributor.authorGarcía Rodríguez, Omaira Elenaes_ES
dc.contributor.authorKhosrawi, Farahnazes_ES
dc.contributor.authorBlumenstock, Thomases_ES
dc.contributor.authorLiu, Fanges_ES
dc.contributor.authorQin, Kaies_ES
dc.contributor.authorLin, Songes_ES
dc.contributor.authorJiang, Hongyanes_ES
dc.contributor.authorFang, Dianjunes_ES
dc.date.accessioned2023-01-13T10:46:24Z-
dc.date.available2023-01-13T10:46:24Z-
dc.date.issued2022-
dc.identifier.citationAtmospheric Measurement Techniques Discussions [Preprint]. 2022es_ES
dc.identifier.issn1867-1381-
dc.identifier.issn1867-8548-
dc.identifier.urihttp://hdl.handle.net/20.500.11765/14305-
dc.description.abstractNitrogen dioxide (NO2) air pollution provides valuable information for quantifying NOx emissions and exposures. This study presents a comprehensive method to estimate average tropospheric NO2 emission strengths derived from three-year (April 2018 – March 2021) TROPOMI observations by combining a wind-assigned anomaly approach and a Machine Learning (ML) method, the so-called Gradient Descent. This combined approach is firstly applied to the Saudi Arabian capital city Riyadh, as a test site, and yields a total emission rate of 1.04×1026 molec./s. The ML-trained anomalies fit very well with the wind-assigned anomalies with an R2 value of 1.0 and a slope of 0.99. Hotspots of NO2 emissions are apparent at several sites where the cement plant and power plants are located and over areas along the highways. Using the same approach, an emission rate of 1.80×1025 molec./s is estimated in the Madrid metropolitan area, Spain. Both the estimate and spatial pattern are comparable to the CAMS inventory.es_ES
dc.description.sponsorshipWe also acknowledge the project of Joint R&D and Talents Program funded by the Qingdao Sino-German Institute of Intelligent Technologies (kh0100020213319) and the project of Transnational Interoperability Rules and Solution Patterns in Collaborative Production Networks based on IDS and GAIA-X funded by Ministry of Science and Technology, PRC (SQ2021YFE010470).es_ES
dc.language.isoenges_ES
dc.publisherEuropean Geosciences Uniones_ES
dc.publisherCopernicus Publicationses_ES
dc.rightsLicencia CC: Reconocimiento CC BYes_ES
dc.subjectNitrogen dioxidees_ES
dc.subjectAir pollutiones_ES
dc.subjectWind-assigned anomalieses_ES
dc.subjectMachine learning techniquees_ES
dc.titleEstimation of NO2 emission strengths over Riyadh and Madrid from space from a combination of wind-assigned anomalies and machine learning technique [Discussion paper]es_ES
dc.typeinfo:eu-repo/semantics/preprintes_ES
dc.relation.publisherversionhttps://doi.org/10.5194/amt-2022-176es_ES
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses_ES
Colecciones: Artículos científicos 2019-2022


Ficheros en este ítem:
  Fichero Descripción Tamaño Formato  
AMTD_Tu_2022.pdf
7,85 MBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro sencillo del ítem



Los ítems de Arcimis están protegidos por una Licencia Creative Commons, salvo que se indique lo contrario.

Repositorio Arcimis
Nota Legal Contacto y sugerencias